Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: You Build it, You Break It, You Fix It: Why Applications Must Be Responsible for Data Quality
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > You Build it, You Break It, You Fix It: Why Applications Must Be Responsible for Data Quality
Uncategorized

You Build it, You Break It, You Fix It: Why Applications Must Be Responsible for Data Quality

EvanLevy
EvanLevy
5 Min Read
SHARE

Video Game Error
 

When it comes to bad data, a lot of the problem stems from companies letting their developers off the hook. That’s right. When it comes to delivering, maintaining, and justifying their code, developers are given a lot of rope. When projects start, everyone nods their head in agreement when data quality comes up. But then there’s scope creep and sizing mistakes, and projects run long.

People start looking for things to remove. And writing error detection and correction code is not only complicated, it’s not sexy. It’s like writing documentation; no one wants to do it because it’s detailed and time consuming. This is the finish work: it’s the fancy veneer, the polished trim, and the paint color. Software vendors get this. If a data entry error shows up in a demo or a software review, it could make or break that product’s reputation. When was the last time any Windows product let you save a file with an invalid name? It doesn’t happen. The last thing a Word user needs is to sweat blood over a document and then never be able to open it again because it was named with an untypeable character.

Error detection and correction code are core aspects of development and require …

More Read

Public Expression, Liability, and Anonymity
The Social Wars Trilogy
Is it a tech bubble?
Mapping the Massachusetts election upset with R, ctd
The Hadoop Honeymoon Is Over

Video Game Error
 

When it comes to bad data, a lot of the problem stems from companies letting their developers off the hook. That’s right. When it comes to delivering, maintaining, and justifying their code, developers are given a lot of rope. When projects start, everyone nods their head in agreement when data quality comes up. But then there’s scope creep and sizing mistakes, and projects run long.

People start looking for things to remove. And writing error detection and correction code is not only complicated, it’s not sexy. It’s like writing documentation; no one wants to do it because it’s detailed and time consuming. This is the finish work: it’s the fancy veneer, the polished trim, and the paint color. Software vendors get this. If a data entry error shows up in a demo or a software review, it could make or break that product’s reputation. When was the last time any Windows product let you save a file with an invalid name? It doesn’t happen. The last thing a Word user needs is to sweat blood over a document and then never be able to open it again because it was named with an untypeable character.

Error detection and correction code are core aspects of development and require rigorous review. Accurate data isn’t just a business requirement—it’s common sense. Users shouldn’t have to explain to developers why inaccurate values aren’t allowed. Do you think that the business users at Amazon.com had to tell their developers that “The Moon” was an invalid delivery address? But all too often developers don’t think they have any responsibility for data entry errors.  

When a system creates data, and when that data leaves that system, the data should be checked and corrected. Bad data should be viewed as a hazardous material that should not be transported. The moment you generate data, you have the implicit responsibility to establish its accuracy and integrity.  Distributing good data to your competitors is unacceptable;  distributing bad data to your team is irresponsible. And when bad data is ignored, it’s negligence.

While everyone—my staff members, included—wants to talk about data governance, policy-making, and executive councils, it all starts with bad data being input into systems in the first place. So, what if we fixed it at the beginning?

Photo by Random J via Flickr (Creative Commons License)

Link to original post

TAGGED:data quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive
ai fitness app
Will AI Replace Personal Trainers? A Data-Driven Look at the Future of Fitness Careers
Artificial Intelligence Big Data Exclusive
crypto marketing
How a Crypto Marketing Agency Can Use AI to Create Powerful Native Advertising Strategies
Blockchain Exclusive Marketing
data driven insights
How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Red Flag or Red Herring?

5 Min Read

The General Theory of Data Quality

9 Min Read
Smart Data
Best PracticesBig DataData ManagementData QualityDecision ManagementPredictive AnalyticsRisk ManagementSocial Data

Can Smart Data Ensure Cybersecurity and Data Protection?

6 Min Read

Commendable Comments (Part 1)

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?