Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Integration: Hand-coding Using ETL Tools Part 2
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Data Integration: Hand-coding Using ETL Tools Part 2
Uncategorized

Data Integration: Hand-coding Using ETL Tools Part 2

RickSherman
RickSherman
5 Min Read
SHARE

Hand-stop This is a continuation of an earlier post that discussed the problems of hand-coding using ETL tools.

What Went Wrong?

There are two aspects of effectively leveraging an ETL tool. First is learning the tool’s mechanics, for example, by taking the tool vendors’ training either in a class or through their on-line tutorials. Most IT people have no problem learning a tool’s syntax. Since they most likely already know SQL, they learn the tool very quickly.

But the second aspect actually involves understanding ETL processes. This includes knowing the data-integration processes needed to gather, conform, cleanse and transform; understanding not only what is dimensional modeling but why and how do you deploy it; being able to implement slowly changing dimensions (SCD) and change data capture (CDC); understanding the data demands of business intelligence; and being able to implement error handling and conditional processing.

More Read

Playing with the feeds…
Put Managers Back in the Driver’s Seat
IBM Enables Business Innovation from 21st Century Technology
Happy Holidays
Largest HIPAA Breach Ever: Hackers Steal Data on 4.5 Million Community Health Systems Patients

Without understanding the why of ETL processing, IT developers either quickly become disillusioned with ETL tools or simply under utilize them. Typically these ETL implementations merely result in the ETL tools executing SQL scripts or stored procedures, for example …



Hand-stop This is a continuation of an earlier post that discussed the problems of hand-coding using ETL tools.

What Went Wrong?

There are two aspects of effectively leveraging an ETL tool. First is learning the tool’s mechanics, for example, by taking the tool vendors’ training either in a class or through their on-line tutorials. Most IT people have no problem learning a tool’s syntax. Since they most likely already know SQL, they learn the tool very quickly.

But the second aspect actually involves understanding ETL processes. This includes knowing the data-integration processes needed to gather, conform, cleanse and transform; understanding not only what is dimensional modeling but why and how do you deploy it; being able to implement slowly changing dimensions (SCD) and change data capture (CDC); understanding the data demands of business intelligence; and being able to implement error handling and conditional processing.

Without understanding the why of ETL processing, IT developers either quickly become disillusioned with ETL tools or simply under utilize them. Typically these ETL implementations merely result in the ETL tools executing SQL scripts or stored procedures, for example, hand-coding.

These hand-coded processes within ETL tools are big trouble-makers. First, the tools have built-in transforms such as SCD and CDC which, if you don’t use, make you re-invent the wheel (code something you already bought). In doing so, you’re likely doing something inefficient at best and outright wrong at worst.

Second, ETL tools are built to be more efficient at extracting, transforming and loading data than SQL coders.

Third, the IT staff is not likely to code extensive error handling or audit routines that are pre-built in the ETL tools. This lessens productivity and responsiveness to issues in data quality.

Fourth, hand-coded processes are often not documented or, if they are initially, they’re not likely to be maintained.

Finally, each hand-coded operation is a custom job that each new developer has to learn, versus being able to bring in a developer who knows an ETL tool.

How to Avoid Repeating History’s Mistakes

You don’t know what you don’t know. It’s not that the IT staff wants to use these ETL tools either incorrectly or inappropriately, but they don’t know any better.

I’ll keep preaching that data-integration processes should be developed using ETL tools rather than hand coding. But what I have learned along the way is I also need to advocate that anyone using these tools learn not just about the tool but more importantly about ETL processing.

FYI: A good starting place is my articles on ETL. Check out my corporate library pointing to my articles, posts, webinars, podcasts and white papers.


Link to original post

TAGGED:etl tools
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

ETL tools: Don’t Forget About the Little Dogs

6 Min Read

Tools and those who enable their misuse

7 Min Read
etl for data-driven businesses
Big Data

Understanding ETL Tools as a Data-Centric Organization

8 Min Read

No Shortcuts: Focus on DW/BI Architecture and Processes, then Think about the Tools

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?