Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The difference between Statistics and Machine Learning
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > The difference between Statistics and Machine Learning
Uncategorized

The difference between Statistics and Machine Learning

DavidMSmith
DavidMSmith
3 Min Read
SHARE

I get my daily R fortune by following Rfortunes on Twitter. This one came up the other day:

To paraphrase provocatively, ‘machine learning is statistics minus any checking of models and assumptions’. Brian D. Ripley.

In a similar vein, back in December Brendan O’Connor remarked upon Rob Tibshirani’s comparison of machine learning and statistics, reproduced here:

Glossary

Machine learningStatistics

network, graphsmodel

weightsparameters

learningfitting

generalizationtest set performance

supervised learningregression/classification

unsupervised learningdensity estimation, clustering

large grant = $1,000,000large grant = $50,000

nice place to have a meeting:
Snowbird, Utah, French Alps

nice place to have a meeting:
Las Vegas in August

More Read

How to Define Big Data
The Future of the Grid: From Telecommunications to Cloud-Based Servers
Who Uses Social Networks Anyway: Part I
Good, Bad & Iffy
If I Text You Tonight, Will Your Analytics Text Me Back in the Morning?

It’s certainly a pithy comparison. Brendan O’Connor concurs that the differences between the two are more superficial than substantive, and his thoughts on the cultural differences between the two disciplines are very interesting. Amongst other things, his comparison of two similar courses in Stanford (one from the Computer Science department, one from Statistics) leads him to conclude:

ML sounds like it’s young, vibrant, interesting to learn, and growing; Stats …



I get my daily R fortune by following Rfortunes on Twitter. This one came up the other day:

To paraphrase provocatively, ‘machine learning is statistics minus any checking of models and assumptions’. Brian D. Ripley.

In a similar vein, back in December Brendan O’Connor remarked upon Rob Tibshirani’s comparison of machine learning and statistics, reproduced here:

Glossary

Machine learningStatistics

network, graphsmodel

weightsparameters

learningfitting

generalizationtest set performance

supervised learningregression/classification

unsupervised learningdensity estimation, clustering

large grant = $1,000,000large grant = $50,000

nice place to have a meeting:
Snowbird, Utah, French Alps

nice place to have a meeting:
Las Vegas in August

It’s certainly a pithy comparison. Brendan O’Connor concurs that the differences between the two are more superficial than substantive, and his thoughts on the cultural differences between the two disciplines are very interesting. Amongst other things, his comparison of two similar courses in Stanford (one from the Computer Science department, one from Statistics) leads him to conclude:

ML sounds like it’s young, vibrant, interesting to learn, and growing; Stats does not.

So, do statisticians “merely” have an image problem in this field, or is there something more substantive at play? Perhaps protests like this are in our future…

CMU Machine learning protest

CMU machine learning students “protest” at the G20 summit in Pittsburg, September 25 2009. Photo by Arthur Gretton on Flickr.

AI and Social Science: Statistics vs. Machine Learning, fight! (via @Cmastication)

Link to original post

TAGGED:statistics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News
AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The “decline effect,” random variation, and evidence-based marketing

7 Min Read

The Global Nature of Big Data and Analytics

5 Min Read

Newsflash: Correlation is Not a Cause!

5 Min Read
google nexus BI lesson
Uncategorized

4 Retail BI Lessons to Learn from Google’s Nexus Fail

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?