Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Terabytes of trees
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Terabytes of trees
Data Mining

Terabytes of trees

DavidMSmith
DavidMSmith
4 Min Read
SHARE

I saw a very interesting talk at hosted by the SF Bay ACM last night. Google engineer Josh Herbach talked about the platform he’d implemented to build boosted and bagged trees on very large data sets using MapReduce. (A longer version of the talk will be presented at VLDB2009 later this month.) The data is distributed amongst many machines in gfs (Google Filesystem): Google Adwords data, with information on each user of Google Search and each click they have made, can run to terabytes and take three days to build a predictive tree. 

The algorithm is quite elegant: after an initialization phase to identify candidate cut-points for continuous predictors and values of categorical variables, the Map step selects a node to add a new chunk of data to, and then calculates a deviance score for a number of candidate splits. The reduce step selects the best split from the various candidates evaluated in the distributed nodes. The process repeats to create a single tree or (as is actually used in practice) a number of bagged and/or boosted trees. One interesting wrinkle: for implementation reasons, the bagged trees use sampling without replacement rather than with …

I saw a very interesting talk at hosted by the SF Bay ACM last night. Google engineer Josh Herbach talked about the platform he’d implemented to build boosted and bagged trees on very large data sets using MapReduce. (A longer version of the talk will be presented at VLDB2009 later this month.) The data is distributed amongst many machines in gfs (Google Filesystem): Google Adwords data, with information on each user of Google Search and each click they have made, can run to terabytes and take three days to build a predictive tree. 

More Read

Package Update Roundup: Apr 2009
SMB Market Intelligence for the C-Suite
An Interview With Tom De Ruyck of BAQMAR
Self-Promoters Score! Why Analysts Can’t be Shy Anymore
Integrating Predictive Analytics and BRM to Improve Health Plan Member Experience
The algorithm is quite elegant: after an initialization phase to identify candidate cut-points for continuous predictors and values of categorical variables, the Map step selects a node to add a new chunk of data to, and then calculates a deviance score for a number of candidate splits. The reduce step selects the best split from the various candidates evaluated in the distributed nodes. The process repeats to create a single tree or (as is actually used in practice) a number of bagged and/or boosted trees. One interesting wrinkle: for implementation reasons, the bagged trees use sampling without replacement rather than with replacement (as bagging is usually defined). Given the amount of data, I’m not sure this makes any practical difference though. Interestingly, he did compare the results to heavily sampling the data and building the tree in-memory in R (all of his charts were done in R, too). He was quite adamant that using all of the data is “worth it” compared to sampling — and with Google’s business model of monetizing the long tail, I can believe it. 
Josh mentioned that all of the techniques he’d implemented could also be implemented using Hadoop, the open-source map-reduce application. This got me thinking that some interesting out-of-memory techniques could be implemented in R via Rhipe, using R statistics functions to implement the Map operations, and R data aggregation for the Reduce functions. Hmm, I feel a new project coming on…

SF Bay ACM: PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce

Link to original post

TAGGED:hadoopMapReducer
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning
Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

The impact of the drug war in Mexico

3 Min Read

Create animated graphics with R

3 Min Read

100 Petabytes of Data in Poop?

6 Min Read

Are Public Clouds Complex Environments?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?