By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
    big data analytics in business
    5 Ways to Utilize Data Analytics to Grow Your Business
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Predicting the next Viral Tweet
Share
Notification Show More
Latest News
cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security
DevOps on cloud
Optimizing Cost with DevOps on the Cloud
Development
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predicting the next Viral Tweet
Data MiningPredictive Analytics

Predicting the next Viral Tweet

ThemosKalafatis
Last updated: 2009/07/25 at 3:38 PM
ThemosKalafatis
6 Min Read
SHARE
- Advertisement -

It is time to use Twitter data for another reason: Can Predictive Analytics be used to identify which tweets have an increased probability to become viral?


First we have to identify the problem and see what information we should consider. Every Tweet has an author, a piece of content, and is posted on a specific day and time. More specifically, for every tweet we can collect usage data such as

- Advertisement -
  • Day of Post
  • Time of post
  • Elapsed minutes since tweet has been posted
  • Author of tweet (Twitter username)
  • Number of followers of the author

and also information such as :

  • Subject of post
  • Whether the tweet involves a question being asked
  • Whether the tweet contains hashtags
  • Whether the tweet contains a “Please Re-Tweet” directive (or variants)
  • Whether a user is mentioned
  • The text of the tweet itself.

Our goal then is to combine the information mentioned above and come up with a predictive model that, when given an author, day, time of post and text of the tweet, it will be able to tell us whether this tweet has an increased probability to become viral …

More Read

Instagram data usage tips

5 Innovative Ways To Reduce Instagram Data Usage

How Big Data Analytics on Twitter Can Help Predict Disease Spread [VIDEO]
Twitter Consistently Valuable for Analytics Initiatives
Twitter: Rubbish, Valuable, or Both?
A Small Experiment with Twitter’s Language Detection Algorithm


It is time to use Twitter data for another reason: Can Predictive Analytics be used to identify which tweets have an increased probability to become viral?


First we have to identify the problem and see what information we should consider. Every Tweet has an author, a piece of content, and is posted on a specific day and time. More specifically, for every tweet we can collect usage data such as

  • Day of Post
  • Time of post
  • Elapsed minutes since tweet has been posted
  • Author of tweet (Twitter username)
  • Number of followers of the author

and also information such as :

- Advertisement -
  • Subject of post
  • Whether the tweet involves a question being asked
  • Whether the tweet contains hashtags
  • Whether the tweet contains a “Please Re-Tweet” directive (or variants)
  • Whether a user is mentioned
  • The text of the tweet itself.

Our goal then is to combine the information mentioned above and come up with a predictive model that, when given an author, day, time of post and text of the tweet, it will be able to tell us whether this tweet has an increased probability to become viral.

For this data and text mining exercise (and keeping in mind that tweets have been sampled from one website and not Twitter itself) let’s define what is a viral tweet: After collecting approx. 8000 tweets from dailyrt.com it was found that the median value of Re-tweets is 17. Here we make the assumption that if a tweet exceeds 30 Re-tweets it is considered viral (and actually this specific assumption makes the classification task much easier).

As discussed above, usage data do not tell us anything about the content of a tweet. Usage data tell us about the name of the author, his/her followers, when the tweet has been posted and how many minutes elapsed since its post. Can this information alone predict whether a tweet will become viral? A data mining model predicted (without using the elapsed time as input field) with an overall accuracy of 75.03% whether a tweet can be viral and – perhaps as expected – shown that the most important factor for making a viral tweet is its author. Running a process called Feature Selection tells us just that :


But what we have seen so far only tells us one – the data mining – side of the story. With text mining we can see the importance of words and authors. To do that, each author is appended at the end of each tweet (so essentially the author becomes a part of each tweet text). Here is what Feature Selection tells us :

A Tweet mentioning Michael Jackson has a great probability of becoming viral but perhaps it should be also posted by a popular author to make a greater impact. Pay attention also to the fact that @mashable and the @theonion are on top of our feature selection list shown above.

- Advertisement -

The difficult – but also interesting – task is to predict a viral tweet that has an impact not because of its author but because of its content and to do this the methodology of data collection and analysis differs significantly.

On the next post we will see a model predicting viral tweets in action: We will submit several tweets and their author and the model will tell us the probability that each submitted tweet has to become viral.

Link to original post

TAGGED: twitter, viral tweet
ThemosKalafatis July 25, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Instagram data usage tips
Big Data

5 Innovative Ways To Reduce Instagram Data Usage

5 Min Read

How Big Data Analytics on Twitter Can Help Predict Disease Spread [VIDEO]

1 Min Read
Image
Analytics

Twitter Consistently Valuable for Analytics Initiatives

4 Min Read

Twitter: Rubbish, Valuable, or Both?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?