Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Entry Point: Architecture or Crumbling Foundation
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Entry Point: Architecture or Crumbling Foundation
Data MiningData Warehousing

Entry Point: Architecture or Crumbling Foundation

DataQualityEdge
DataQualityEdge
3 Min Read
SHARE

Let us talk for a moment about architecture.

Good architecture is built to last, to withstand the elements and the test of time. Good data architecture will allow you to extract data quickly, will help prevent data errors from occurring, and promote easy integration of future data assets.

With bad architecture, the following will persist like vermin in your basement:

  1. Data retrieval times will increase
  2. Data retrieval will become more difficult
  3. The integration and migration of projects will become cumbersome
  4. The creation and spread of bad data will be more likely

Soon the walls around you will begin to crumble as more and more data becomes questionable. Your users will question the data, and eventually your system will become synonymous with the term “poor data quality.”

More Read

Put Predictive Analytics To Work in Operations
Let’s raise our glasses… to those who raise intelligence
Quick Visualization of irs.gov Search Queries
First Look – AlignSpace
How to Cheat with Data Mining

When building your data warehouse, remember to:

  1. Ensure you size it properly and measure future capacity for continuous growth
  2. If bad data does occur, have your data analysts cleanse it; and don’t build overly complicated data models — remember the KISS principle
  3. Improve speed to delivery and reaction time
  4. Improve query and data retrieval times

When defining your architecture and/or database system remember the following…


Let us talk for a moment about architecture.

Good architecture is built to last, to withstand the elements and the test of time. Good data architecture will allow you to extract data quickly, will help prevent data errors from occurring, and promote easy integration of future data assets.

With bad architecture, the following will persist like vermin in your basement:

  1. Data retrieval times will increase
  2. Data retrieval will become more difficult
  3. The integration and migration of projects will become cumbersome
  4. The creation and spread of bad data will be more likely

Soon the walls around you will begin to crumble as more and more data becomes questionable. Your users will question the data, and eventually your system will become synonymous with the term “poor data quality.”

When building your data warehouse, remember to:

  1. Ensure you size it properly and measure future capacity for continuous growth
  2. If bad data does occur, have your data analysts cleanse it; and don’t build overly complicated data models — remember the KISS principle
  3. Improve speed to delivery and reaction time
  4. Improve query and data retrieval times

When defining your architecture and/or database system remember the following steps to help prevent bad architecture from occurring:

  1. Define the objective of the data warehouse
  2. Research the data and datasets (understand the business and its processes)
  3. Design the data model
  4. Define the database relationships
  5. Define rules, triggers and constraints
  6. Create views and/or reports
  7. Implement it.
TAGGED:architecturedata quality
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

#16: Here’s a thought…

7 Min Read

Confronting a False Positive

5 Min Read

Guiding Call Center Workers to Data Quality

5 Min Read

Data Visualization: Why (1 of 2)

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?