Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A statistical learning web service, in R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A statistical learning web service, in R
Data Mining

A statistical learning web service, in R

DavidMSmith
DavidMSmith
4 Min Read
SHARE

Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering…


Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

More Read

Food Data : The next target of Massive Analytics
Are Data Scientists Overpaid?
“Our clients understand they’re operating in a competitive environment where more than ever…”
Predictive modeling and today’s growing data challenges
Graphing real-time foreclosure data: Data Mashups in R

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering, performance and security implications that follow).

More than anything, I think this provides an excellent example of integrating R analytics into a web-based application. As an experiment in machine learning, color me intrigued: it will interesting to see whether this becomes a practical and useful service for predicting from data without human intervention. If so, I await the howls of protest from data miners, echoing similar howls from statisticians (vis-à-vis data mining) at the growth of data mining 20 years ago. 

Joshua Reich: predict.i2pi.com

Link to original post

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

R Examples for Actuaries

3 Min Read

Improving the responsiveness of websites with R

2 Min Read

The impact of the drug war in Mexico

3 Min Read

Interview – Anne Milley, SAS, Part 1

15 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?