Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A statistical learning web service, in R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A statistical learning web service, in R
Data Mining

A statistical learning web service, in R

DavidMSmith
DavidMSmith
4 Min Read
SHARE

Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering…


Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

More Read

Wikipedia entry for SPSS Clementine
Let your gray hair light your way through unfamiliar data
Decision Management and software development III – DSLs
“While touring IBM’s Innovation lab at Lotusphere last…
Training students on mega-scale data

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering, performance and security implications that follow).

More than anything, I think this provides an excellent example of integrating R analytics into a web-based application. As an experiment in machine learning, color me intrigued: it will interesting to see whether this becomes a practical and useful service for predicting from data without human intervention. If so, I await the howls of protest from data miners, echoing similar howls from statisticians (vis-à-vis data mining) at the growth of data mining 20 years ago. 

Joshua Reich: predict.i2pi.com

Link to original post

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Reminder: High-Performance Backtesting Webinar Tomorrow

2 Min Read

Interview: Jon Peck SPSS

12 Min Read

Experimenting on Facebook

5 Min Read

Thoughts on UseR! 2009

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?