Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A statistical learning web service, in R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A statistical learning web service, in R
Data Mining

A statistical learning web service, in R

DavidMSmith
DavidMSmith
4 Min Read
SHARE

Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering…


Josh Reich has created a “statistical learning web service” using R. The basic idea is that you can visit predict.i2pi.com and upload a data set (in CSV format). The only meta-information you provide is which variables in the data set are predictors, and which are responses. The service will then choose a statistical model, estimate it, and return predictions for the response variables for the model. You can leave some of the response values as NA — missing — to create a prediction set; rows with values will act as the training set.

More Read

Big Data: The Coming Sensor Data Driven Productivity Revolution
First Look Tavant
New R User Group in Los Angeles
A Question of Scope
7 Big Data Trends That Will Impact Your Business

The model estimation is implemented in R, and currently implements a range of common classification and regression methods. Better yet, the system is extensible: you can provide new models (including transformations of the variable space) as R code, and Josh will incorporate it into the suite of models that are tested on uploaded data sets. R has a wealth of machine learning algorithms to draw on, so I’d expect the range of methods to expand significantly over time. The details on how models are evaluated and chosen, and how new models are added to the system, can all be found at the i2pi blog (along with some good discussions of the engineering, performance and security implications that follow).

More than anything, I think this provides an excellent example of integrating R analytics into a web-based application. As an experiment in machine learning, color me intrigued: it will interesting to see whether this becomes a practical and useful service for predicting from data without human intervention. If so, I await the howls of protest from data miners, echoing similar howls from statisticians (vis-à-vis data mining) at the growth of data mining 20 years ago. 

Joshua Reich: predict.i2pi.com

Link to original post

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Visualizing Katrina’s Strongest Winds with R

1 Min Read

Visualizing correlation matrices

2 Min Read

Interview: Jon Peck SPSS

12 Min Read

Interview – Anne Milley, SAS, Part 1

15 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?