Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: My PMML KXEN exported model has problems, how do I fix it?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > My PMML KXEN exported model has problems, how do I fix it?
Uncategorized

My PMML KXEN exported model has problems, how do I fix it?

MichaelZeller
MichaelZeller
3 Min Read
SHARE

The latest KXEN software exports perfect PMML, however if you are using older versions of KXEN, the PMML model it exports may have some problems which will be picked-up by the PMML Converter during conversion or ADAPA during model upload. These hic-ups can be easily fixed. Here is a list of issues we encountered (and remedies we suggest).

1) Your PMML model needs to contain the URL with the address of the PMML schema. Our PMML Converter will add that to the model automatically once you pass it through the converter.

2) Models may contain DerivedFields for which optype = “continuous” but dataType = “string”. Just change the dataType to “double”.

3) Models may contain DerivedFields in which the output of a NormContinuous transformation is a float (dataType = “float”). Change the dataType to “double”.

More Read

Vivek Kundra: Still the Alpha CTO and now the First Fed CIO
How to Define Big Data
Santa and SAS Again: Santa’s Dashboard
When Your Staff Turns Against You with Social Media
Cloud ROI: Business and Financial Gains

4) For clustering models, make sure compareFunction = “absdiff” is expressed with a small “d”. Models may refer to “absDiff” instead which is not valid.

5) Again, for clustering models only, delete the element CenterFields (this is not valid PMML).

6) If you have a Mining Model, also check our blog on how to upload KXEN Mining Models into ADAPA.

Your model should be perfect now and ready for …


The latest KXEN software exports perfect PMML, however if you are using older versions of KXEN, the PMML model it exports may have some problems which will be picked-up by the PMML Converter during conversion or ADAPA during model upload. These hic-ups can be easily fixed. Here is a list of issues we encountered (and remedies we suggest).

1) Your PMML model needs to contain the URL with the address of the PMML schema. Our PMML Converter will add that to the model automatically once you pass it through the converter.

2) Models may contain DerivedFields for which optype = “continuous” but dataType = “string”. Just change the dataType to “double”.

3) Models may contain DerivedFields in which the output of a NormContinuous transformation is a float (dataType = “float”). Change the dataType to “double”.

4) For clustering models, make sure compareFunction = “absdiff” is expressed with a small “d”. Models may refer to “absDiff” instead which is not valid.

5) Again, for clustering models only, delete the element CenterFields (this is not valid PMML).

6) If you have a Mining Model, also check our blog on how to upload KXEN Mining Models into ADAPA.

Your model should be perfect now and ready for uploading into ADAPA.

Comprehensive blog featuring topics related to predictive analytics with an emphasis on open standards, Predictive Model Markup Language (PMML), cloud computing, as well as the deployment and integration of predictive models in any business process.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Change by Design Insight No.1. Go out into the world

3 Min Read

Wolfram Talks About Wolfram Alpha

4 Min Read

Feels SOA good

3 Min Read

Stop Justifying Data Quality Programs and Do the DQ Work Already!

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?