Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using multiple business intelligence tools in an implementation – Part II
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Using multiple business intelligence tools in an implementation – Part II
Business Intelligence

Using multiple business intelligence tools in an implementation – Part II

Peter James Thomas
Peter James Thomas
4 Min Read
SHARE

Rather unsurprisingly, this article follows on from: Using multiple business intelligence tools in an implementation.

On further reflection about this earlier article, I realised that I missed out one important point. This was perhaps implicit in the diagram that I posted (and which I repeat below), but I think that it makes sense for me to make things explicit.

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

The point is that in this architecture with different BI tools in different layers, it remains paramount to have consistency in terminology and behaviour for dimensions and measures. So “Country” and “Profit” must mean the same things in your dashboard as it does in your OLAP cubes. The way that I have achieved this before is to have virtually all of the logic defined in the warehouse itself. Of course some things may need to be calculated “on-the-fly” within the BI tool, in this case care needs to be paid to ensuring consistency.

It has been pointed out that the approach of using the warehouse to drive consistency may circumscribe your ability to fully exploit the functionality of some BI tools. While this is sometimes true, I think it is not just a price worth…

Rather unsurprisingly, this article follows on from: Using multiple business intelligence tools in an implementation.

On further reflection about this earlier article, I realised that I missed out one important point. This was perhaps implicit in the diagram that I posted (and which I repeat below), but I think that it makes sense for me to make things explicit.

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

The point is that in this architecture with different BI tools in different layers, it remains paramount to have consistency in terminology and behaviour for dimensions and measures. So “Country” and “Profit” must mean the same things in your dashboard as it does in your OLAP cubes. The way that I have achieved this before is to have virtually all of the logic defined in the warehouse itself. Of course some things may need to be calculated “on-the-fly” within the BI tool, in this case care needs to be paid to ensuring consistency.

It has been pointed out that the approach of using the warehouse to drive consistency may circumscribe your ability to fully exploit the functionality of some BI tools. While this is sometimes true, I think it is not just a price worth paying, but a price that it is mandatory to pay. Inconsistency of any kind is the enemy of all BI implementations. If your systems do not have credibility with your users, then all is already lost and no amount of flashy functionality will save you.
 

tweet thisTweet this article on twitter.com
Bookmark this article with:
Technorati| del.icio.us| digg| Reddit| Stumble

 

Posted in business, business intelligence, dashboards, data warehousing, management information, technology Tagged: bi, business intelligence, information technology, it business alignment, it management, it projects, it strategy, management information

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Dynamic Infrastructure for a Smarter Planet (via IBMSocialMedia)

1 Min Read

Analytics Projects Are Like Skiing Through Moguls?

1 Min Read
online advertising
Artificial IntelligenceMarketing

AI Tools to Help You with Your Online Advertising Spend

5 Min Read
AI helps create discord server bots
Artificial IntelligenceExclusive

AI-Driven Discord Bots Can Track Server Stats

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?