Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using multiple business intelligence tools in an implementation – Part II
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Using multiple business intelligence tools in an implementation – Part II
Business Intelligence

Using multiple business intelligence tools in an implementation – Part II

Peter James Thomas
Peter James Thomas
4 Min Read
SHARE

Rather unsurprisingly, this article follows on from: Using multiple business intelligence tools in an implementation.

On further reflection about this earlier article, I realised that I missed out one important point. This was perhaps implicit in the diagram that I posted (and which I repeat below), but I think that it makes sense for me to make things explicit.

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

The point is that in this architecture with different BI tools in different layers, it remains paramount to have consistency in terminology and behaviour for dimensions and measures. So “Country” and “Profit” must mean the same things in your dashboard as it does in your OLAP cubes. The way that I have achieved this before is to have virtually all of the logic defined in the warehouse itself. Of course some things may need to be calculated “on-the-fly” within the BI tool, in this case care needs to be paid to ensuring consistency.

It has been pointed out that the approach of using the warehouse to drive consistency may circumscribe your ability to fully exploit the functionality of some BI tools. While this is sometimes true, I think it is not just a price worth…

Rather unsurprisingly, this article follows on from: Using multiple business intelligence tools in an implementation.

On further reflection about this earlier article, I realised that I missed out one important point. This was perhaps implicit in the diagram that I posted (and which I repeat below), but I think that it makes sense for me to make things explicit.

An example of a multi-tier BI architecture with different tools

An example of a multi-tier BI architecture with different tools

The point is that in this architecture with different BI tools in different layers, it remains paramount to have consistency in terminology and behaviour for dimensions and measures. So “Country” and “Profit” must mean the same things in your dashboard as it does in your OLAP cubes. The way that I have achieved this before is to have virtually all of the logic defined in the warehouse itself. Of course some things may need to be calculated “on-the-fly” within the BI tool, in this case care needs to be paid to ensuring consistency.

It has been pointed out that the approach of using the warehouse to drive consistency may circumscribe your ability to fully exploit the functionality of some BI tools. While this is sometimes true, I think it is not just a price worth paying, but a price that it is mandatory to pay. Inconsistency of any kind is the enemy of all BI implementations. If your systems do not have credibility with your users, then all is already lost and no amount of flashy functionality will save you.
 

tweet thisTweet this article on twitter.com
Bookmark this article with:
Technorati| del.icio.us| digg| Reddit| Stumble

 

Posted in business, business intelligence, dashboards, data warehousing, management information, technology Tagged: bi, business intelligence, information technology, it business alignment, it management, it projects, it strategy, management information

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News
AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Interview: Curtis Rapp on mobile messaging

2 Min Read

Operational Analytics resarch available

2 Min Read

Good Advice for Bad Times?

4 Min Read

My Brain is Full! “Performance Leadership” by Frank Buytendijk

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?