Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Speed up backtesting with parallel computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Speed up backtesting with parallel computing
Data MiningPredictive Analytics

Speed up backtesting with parallel computing

DavidMSmith
DavidMSmith
2 Min Read
SHARE

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis). Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results. With a multiprocessor computer or with a simple cluster of machines running R,…

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis).

Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results.

More Read

2012: The Year of Big Data in American Politics
7 Big Data Trends That Will Impact Your Business
What is that statistical speech model you are talking about?
Segmentation is About Precision
MasterCard Applies Big Data to Help Retailers Achieve Better Results

With a multiprocessor computer or with a simple cluster of machines running R, you can reduce the time required (scaling by the number of processors available). Bryan gives a very neat example of using the new foreach function in ParallelR 2.0 to simply create a parallelized version of a for loop and reduce the time required for the backtesting calculation by a factor of nearly four on a quad-core machine.

REvolution Computing: High-Performance Backtesting with Vhayu and REvolution R

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Not to scale

2 Min Read

Because it’s Friday: United States of Obesity

3 Min Read

Improving the responsiveness of websites with R

2 Min Read

Learning R

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?