Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Speed up backtesting with parallel computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Speed up backtesting with parallel computing
Data MiningPredictive Analytics

Speed up backtesting with parallel computing

DavidMSmith
DavidMSmith
2 Min Read
SHARE

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis). Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results. With a multiprocessor computer or with a simple cluster of machines running R,…

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis).

Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results.

More Read

Data Miners: Participate in 3rd Annual Survey
The Big Question In Big Data Is…What’s The Question?
Target variables matter but so do decisions.
6 Predictions About the Future of Predictive Analytics
Data Mining Book Review: Handbook of Statistical Analysis and Data Mining Applications

With a multiprocessor computer or with a simple cluster of machines running R, you can reduce the time required (scaling by the number of processors available). Bryan gives a very neat example of using the new foreach function in ParallelR 2.0 to simply create a parallelized version of a for loop and reduce the time required for the backtesting calculation by a factor of nearly four on a quad-core machine.

REvolution Computing: High-Performance Backtesting with Vhayu and REvolution R

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning
Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Side-by-side statistical analyses in R, SAS, SPSS

3 Min Read

Converting time zones in R: tips, tricks and pitfalls

9 Min Read

A statistical learning web service, in R

4 Min Read

Thoughts on UseR! 2009

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?