Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Speed up backtesting with parallel computing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Speed up backtesting with parallel computing
Data MiningPredictive Analytics

Speed up backtesting with parallel computing

DavidMSmith
DavidMSmith
2 Min Read
SHARE

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis). Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results. With a multiprocessor computer or with a simple cluster of machines running R,…

The video from last month’s high-performance backtesting webinar is now available for replay. It’s well worth checking out, especially for the demonstration at the end (from our own Bryan Lewis).

Backtesting financial models is almost always a time-consuming task. Running the model over a sequence of historical time periods can be a burden both because the model itself may be expensive to compute, and the number of time periods may be large to get sufficient resolution of the trends over time and the deviations from actual results.

More Read

Virtual Softwares :Telecommuting 2
Privacy, Pseudonymity, and Copyright
Death and Taxes
Web Lies, Damned Lies, and Statistics
PAW: Predictive modeling and today’s growing data challenges

With a multiprocessor computer or with a simple cluster of machines running R, you can reduce the time required (scaling by the number of processors available). Bryan gives a very neat example of using the new foreach function in ParallelR 2.0 to simply create a parallelized version of a for loop and reduce the time required for the backtesting calculation by a factor of nearly four on a quad-core machine.

REvolution Computing: High-Performance Backtesting with Vhayu and REvolution R

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive
julia taubitz vn5s g5spky unsplash
Benefits of AI in Nursing Education Amid Medicaid Cuts
Artificial Intelligence Exclusive News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

SAS formally announces integration with R in SAS/IML Studio

1 Min Read

Physicists, models, and the credit crisis

3 Min Read

Package Update Roundup: Apr 2009

5 Min Read

Choosing colors in R

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?