Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How To Increase Response Rates by Making RFM Better
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > How To Increase Response Rates by Making RFM Better
Uncategorized

How To Increase Response Rates by Making RFM Better

BradTerrell
BradTerrell
3 Min Read
SHARE

Here’s another argument for why performance matters – this time a simple one based on a simple concept:  RFM.  RFM is the foundation of database marketing (Direct magazine’s 2000 subscriber survey reported that at least 75% of consumer and 52% of b-to-b direct marketers maintain standard RFM indicators).  RFM is a simple linear modeling technique […]

HourglassHere’s another argument for why performance matters – this time a simple one based on a simple concept:  RFM.  RFM is the foundation of database marketing (Direct magazine’s 2000 subscriber survey reported that at least 75% of consumer and 52% of b-to-b direct marketers maintain standard RFM indicators).  RFM is a simple linear modeling technique for ranking an audience based on their likelihood to respond using behavioral data.  It looks at:

  • Recency – The length of time since the audience’s last desired behavior (page view, ad view, click-thru, sign-up, survey completion, order, etc.).  Customers that have purchased recently are more likely to do so again versus customers that have not purchased in a while.
  • Frequency – The rate at which the audience is exhibiting those desired behaviors.  Customers that purchase frequently are more likely to purchase again than customers that have only purchased once or twice.
  • Monetary Value – The sum of the value of the audience’s desired behaviors.  Customers that have spent the most money in total are more likely to purchase again.

There are more advanced analytical techniques that can predict the likelihood of response with greater accuracy (e.g. CHAID, factor analysis, cluster analysis, logistic regression, etc.), but even these techniques typically incorporate RFM-based variables since they tend to be particularly predictive of response.  So while RFM is a simple concept, it’s also an important one.

More Read

By the Dashboard Light
More Than Pretty Pictures: Visualizing Insight
Conference Calendar
TwitClicks drops Twitter user feature?
Twitter is Not a Search Engine

Recency (the “R” in RFM) is a particularly powerful predictor of future behavior – it often has the most predictive strength of the three data elements in RFM.  In other words, your audience’s most recent behaviors are the most powerful indicators of their intent.  So the more quickly you incorporate the most recent available behavioral data into your RFM scoring methodology, the more precise your targeting will be. And as previously mentioned here, increasing targeting precision creates lots of goodness (like increasing campaign response rates, user engagement, etc.).  Increasing query performance and data load performance are great ways to achieve these goals.

Photo credit:  John-Morgan

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Haste is a Waste

3 Min Read

3 Cloud Computing Security Holes to Watch Out For

4 Min Read

Managed Services: Freeing Corporate IT for Business Strategies

4 Min Read

3 Ingenious Use Cases for Business Intelligence Tools

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?