Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Ten ways to build a wrong scoring model
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Ten ways to build a wrong scoring model
Data MiningPredictive Analytics

Ten ways to build a wrong scoring model

Editor SDC
Editor SDC
3 Min Read
SHARE

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity… 

More Read

Segmentation is About Precision
The World of Data [INFOGRAPHIC]
Identity Crisis
The Horizon of Data Mining
SSD and DB usage

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity.

If you don’t know the difference between Multicollinearity and Heteroscedasticity, this could be the real deal-breaker for you

4) Using legacy codes for running scoring, usually with step-wise forward and backward  regression. This usually happens on Fridays and when you’re in a hurry to make models.

5) Ignoring signs or magnitude of parameter estimates (that’s the output or the weightage of the variable in the equation).

6) Not knowing the difference between Type 1 and Type 2 errors, especially when rejecting variables based on P value.

7) Excessive zeal in removing variables. Why? Ask yourself this question every time you are removing a variable.

8) Using the wrong causal event (like mailings for loans) for predicting the future with scoring model (for mailings of deposit accounts). Or using the right causal event in the wrong environment (rapid decline/rise of sales due to factors not present in model like competitor entry/going out of business, oil prices, credit shocks sob sob sigh).

9) Over-fitting.

10) Learning about creating models from blogs and not  reading and refreshing your old statistics textbooks.

Share/Save/Bookmark

TAGGED:scoring models
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

More Ways to get a Scoring Model wrong

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?