Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Ten ways to build a wrong scoring model
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Ten ways to build a wrong scoring model
Data MiningPredictive Analytics

Ten ways to build a wrong scoring model

Editor SDC
Editor SDC
3 Min Read
SHARE

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity… 

More Read

Who Gets the Call When Your Analytics Process Crashes?
Big Data and Rise of Predictive Enterprise Solutions
3 Ways Automation Tools Use Big Data To Drive Business Growth
KPI framework for a competitive edge
India Trip

Below are some ways to build a wrong scoring model. The author doesn’t make any guarantee that if your modeling team uses one of them they will still get a correct model.

1) Over-fit the model to the sample. This over-fitting can be checked by taking a random sample again and fitting the scoring equation and comparing predicted conversion rates versus actual conversion rates. The over-fit model does not rank order: deciles with lower average probability may show equal or more conversions than deciles with higher probability scores.

2) Choose non-random samples for building and validating the scoring equation. Read over-fitting above.

3) Use Multicollinearity without business judgment to remove variables that may make business sense. This usually happens a few years after you studied — and have now forgotten — multicollinearity.

If you don’t know the difference between Multicollinearity and Heteroscedasticity, this could be the real deal-breaker for you

4) Using legacy codes for running scoring, usually with step-wise forward and backward  regression. This usually happens on Fridays and when you’re in a hurry to make models.

5) Ignoring signs or magnitude of parameter estimates (that’s the output or the weightage of the variable in the equation).

6) Not knowing the difference between Type 1 and Type 2 errors, especially when rejecting variables based on P value.

7) Excessive zeal in removing variables. Why? Ask yourself this question every time you are removing a variable.

8) Using the wrong causal event (like mailings for loans) for predicting the future with scoring model (for mailings of deposit accounts). Or using the right causal event in the wrong environment (rapid decline/rise of sales due to factors not present in model like competitor entry/going out of business, oil prices, credit shocks sob sob sigh).

9) Over-fitting.

10) Learning about creating models from blogs and not  reading and refreshing your old statistics textbooks.

Share/Save/Bookmark

TAGGED:scoring models
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

More Ways to get a Scoring Model wrong

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?