Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How many models is enough?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > How many models is enough?
Business IntelligenceData Mining

How many models is enough?

TimManns
TimManns
4 Min Read
SHARE

I recently missed a presentation by a data mining software vendor (due to my recent paternity break), but I’ve been reviewing my colleagues notes and vendor presentation slides. I won’t name the vendor; you can probably work it out.

A significant part of the vendor solution is the ability to manage many, we’re talking hundreds, of data mining models (predictive, clustering etc).

In my group we do not have many data mining models, maybe a dozen, that we run on a weekly or monthly basis. Each model is quite comprehensive and will score the entire customer base (or near to it) for a specific outcome (churn, up-sell, cross-sell, acquisition, inactivity, credit risk, etc). We can subsequently select sub-populations from the customer base for targetted communications based upon the score or outcome of any single or a combination of models, or any criteria take from customer information.

I’m not entirely sure why you would want hundreds of models in a Telco (or similar) space…

More Read

ai in insurance
Here’s How AI-backed Insurance Plans Make Your Life Easy
AI Technology Helps App Marketplaces Compete with App Store
Dashboards: A Kite with a Broken String?
April 23, Santa Clara: Managing Integrated Marketing
Alberto’s Business Analytics Predictions for 2012


I recently missed a presentation by a data mining software vendor (due to my recent paternity break), but I’ve been reviewing my colleagues notes and vendor presentation slides. I won’t name the vendor; you can probably work it out.

A significant part of the vendor solution is the ability to manage many, we’re talking hundreds, of data mining models (predictive, clustering etc).

In my group we do not have many data mining models, maybe a dozen, that we run on a weekly or monthly basis. Each model is quite comprehensive and will score the entire customer base (or near to it) for a specific outcome (churn, up-sell, cross-sell, acquisition, inactivity, credit risk, etc). We can subsequently select sub-populations from the customer base for targetted communications based upon the score or outcome of any single or a combination of models, or any criteria take from customer information.

I’m not entirely sure why you would want hundreds of models in a Telco (or similar) space. Any selection criteria applied to specific customers (say, by age, or gender, or state, or spend) before modeling will of course force a biased sample that feeds into the model and affects its inherent nature. Once this type of selective sampling is performed you can’t easily track the corresponding model over time *if* the sampled sub-population ever changes (which is likely because people do get older, move house, or change spend etc). For this reason I can’t understand why someone would want or have many models. It makes perfect sense in Retail (for example a model for each product or associations rules for product recommendations), but not many models that apply to sub-populations of your customer base.

Am I missing something here? If you are working with a few products or services and a large customer base, why would you prefer many models over a few?

Comments please 🙂
Link to original post

TAGGED:models
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Content in Context – Better, Smarter Decisions Powered by Analytics

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?