Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Volatility vs. Leverage
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Volatility vs. Leverage
Predictive Analytics

Volatility vs. Leverage

Editor SDC
Editor SDC
6 Min Read
SHARE

Recently I’ve been curious about volatility and leverage. Here’s the problem: let’s say you make or lose 10% of your total wealth based on the outcome of a coin flip. You make this bet a few times in a row. If you win then lose, you have 100*(1+10%) = $110 then 110*(1-10%) = $99. Likewise if you lose then win, 100*(1-10%) = $90 then 90*(1+10%) = $99. The more you play this game the more money you will lose, assuming the coin is fair. Basically you lose more when you’re up and win less when you’re down- both are bad.

This is one way of seeing why daily stock market returns must follow the log-normal distribution, which is right-skewed instead of a normal distribution. (in contrast to this Dutch book approach, you can also understand it as continuous returns are normally distributed, but daily/periodic are log-normal). If returns were symmetric, like the coin flipping game above, stocks would be pulled toward zero over time.

And this would increase with volatility. For example, lever the coin flipping game 2x, so it’s 20% depending on if you win or lose (even without financing costs). 100*(1.2)*(.8) = $96 = 100*(.8)*(1.2) so now you end up with even less. If the game is positive expec…


Recently I’ve been curious about volatility and leverage. Here’s the problem: let’s say you make or lose 10% of your total wealth based on the outcome of a coin flip. You make this bet a few times in a row. If you win then lose, you have 100*(1+10%) = $110 then 110*(1-10%) = $99. Likewise if you lose then win, 100*(1-10%) = $90 then 90*(1+10%) = $99. The more you play this game the more money you will lose, assuming the coin is fair. Basically you lose more when you’re up and win less when you’re down- both are bad.

More Read

Electrospinning is a process that uses an electrical charge to…
First Look – Rogue Wave
Miss the Right Connections at Your Own Peril
The Next Leadership Agenda November 6, 2008
AOL Advertising on the Need for Speed in Yield Optimization

This is one way of seeing why daily stock market returns must follow the log-normal distribution, which is right-skewed instead of a normal distribution. (in contrast to this Dutch book approach, you can also understand it as continuous returns are normally distributed, but daily/periodic are log-normal). If returns were symmetric, like the coin flipping game above, stocks would be pulled toward zero over time.

And this would increase with volatility. For example, lever the coin flipping game 2x, so it’s 20% depending on if you win or lose (even without financing costs). 100*(1.2)*(.8) = $96 = 100*(.8)*(1.2) so now you end up with even less. If the game is positive expectation (such as +15%, -5%), i.e. you have an alpha generating strategy in market terminology, then leverage is a tradeoff between this downward pull of volatility and the upward pull of positive expected value.

It’s obvious that 0% leverage give $0 downward pull, we showed 10$ is $1 down, 20% is $4 down, a quick calc shows 100*1.3*.7 = $91 i.e. $9 down, etc. This simple plot illustrates the exponential trend of losses with respect to leverage/volatility:

Fortunately the effect of levering up positive expectation is usually higher than the downward pull of volatility. The losses above are in terms of $ but since the starting amount is 100, in terms of percents it would be the same. The game starts out at 10% volatility so 20% corresponds to 2:1 leverage, 30% 3:1, 10% 1:1 (no leverage), and 0% volatility means all cash/out of the market. If you have theoretical alpha of say 10%, 1:1 leverage will pull it down 1%. 2:1 leverage will pull it down 4%, but also double it to 20% for a net of +7% [=(20-10)-(4-1)]. 3:1 increases the volatility to 30% as above decreasing the return 9% but it raised it to 30% theoretical for a net of +5% [=(30-20)-(9-4)].

You can see in the example above that leverage helps but the benefit decreases (+7%, then +5%, then …). The alpha rises linearly with respect to leverage but returns are eaten away polynomially (degree 2) with respect to leverage on the bottom by volatility. Eventually the polynomial curve must cross the linear one and increasing leverage will then harm returns. The Kelly formula essentially finds this optimal crossover point. This is a toy example but perfectly applicable to trading.

In the next note I will analyze the ultrashort ETF, SKF. It’s very interesting because it has to replicate the returns of the financial sector, leveraged 2x but inversely. So if the financial sector, XLF, goes up 3%, SKF has to go down 6% etc. The really intruiging thing to remember is that XLF’s returns must be right skewed, log-normal, or else it would steadily fall by te effect of volatility. However SKF is -1*XLF meaning that it is left skewed and should therefore be negative expectation, and furthermore suffer extra volatility problems because it is double leveraged. My question is how can an creation like SKF be possible in a no-arbitrage environment if it always loses money. And if it is possible, where does the money go that it’s losing… {can I have it?}

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Mining Data Sets

1 Min Read

Simple Methods and Ensemble Forecasting of Elections

6 Min Read

The “Avoidability” of Forecast Error

4 Min Read
Image
AnalyticsBusiness RulesPredictive AnalyticsSoftware

Will Predictive Analytics and POS Save Small Retailers from Extinction?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?