Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Probability of Ruin
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Probability of Ruin
Predictive Analytics

Probability of Ruin

Editor SDC
Editor SDC
4 Min Read
SHARE

Catalan Numbers are an interesting way of modeling the probability of ruin.

Specifically, Catalan Numbers help find the probability that a Brownian process such as equity prices will have more losers than winners at any time before the end of the period being tested. So if three trades are good and then four go bad, we would call this “ruin” because we are below the baseline. Now, for example, let’s say we want to know the odds of ruin over any 14 trades with a winning percentage of 50%. So the outcomes may look as follows (time is the horizontal and return vertical):
The formula for the probability of survival is as follows, where n=14/2=7 in this case

Solving, P=439/5040=8.5%. So with a 50/50 chance of a winning trade, you will almost certainly be down at some point during a 14 trade period.

Some of the assumptions that need to be eliminated are: the exact balancing of winning and losing trades (but in different orders), 50% odds, and the definition of ruin being down by a net of just one bet (or, equivalently, having higher starting principal than 1 wager). I will keep researching what has been done to compesate for these assumptions. The theory I’ve described so far has apparently…

More Read

Physicists, models, and the credit crisis, ctd.
Decision Tree Bagging
What data mining software to buy?
Big Data Analytics: The Future is Already Here
Should You Use Predictive Analytics in Your Big Data Marketing


Catalan Numbers are an interesting way of modeling the probability of ruin.

Specifically, Catalan Numbers help find the probability that a Brownian process such as equity prices will have more losers than winners at any time before the end of the period being tested. So if three trades are good and then four go bad, we would call this “ruin” because we are below the baseline. Now, for example, let’s say we want to know the odds of ruin over any 14 trades with a winning percentage of 50%. So the outcomes may look as follows (time is the horizontal and return vertical):
The formula for the probability of survival is as follows, where n=14/2=7 in this case

Solving, P=439/5040=8.5%. So with a 50/50 chance of a winning trade, you will almost certainly be down at some point during a 14 trade period.

Some of the assumptions that need to be eliminated are: the exact balancing of winning and losing trades (but in different orders), 50% odds, and the definition of ruin being down by a net of just one bet (or, equivalently, having higher starting principal than 1 wager). I will keep researching what has been done to compesate for these assumptions. The theory I’ve described so far has apparently been known since 1844 so there are probably extensions floating around. One document I found already, via MIT OCW (an amazing resource; in high school I watched almost the entire Linear Algebra lecture series– good times), introduces what resembles the probability density function of a binomial random variable. This may eliminate the 50/50 odds assumption but I don’t completely understand it yet.

I think this is probably a better way to quantify risk than with VaR (i.e. standard deviation of periodic returns). In the Ralph Vince book I mentioned previously it lays out another model of a trader’s risk in terms of drawdown. It was also interesting but possibly limited by over-reliance on historical maximum drawdown. Of course every model is hamstrung by being forced to always look backwards like fortune tellers in The Inferno.

I’d like to know of any extensions of Catalan Numbers specifically to modeling risk in betting processes. As always, feel free to leave a comment on anything else too.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

IBM today announced a partnership with TD Bank Financial Group…

1 Min Read

Embracing and Communicating Uncertainty: Model Enabled Analysis and a Modeler’s Hippocratic Oath

6 Min Read

Live from InterAct – preshow tutorials

2 Min Read
prevent DDoS attacks
AnalyticsExclusivePredictive AnalyticsSecurity

Can Predictive Analytics Prevent DDoS Attacks Against SME Websites?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?