Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Probability of Ruin
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Probability of Ruin
Predictive Analytics

Probability of Ruin

Editor SDC
Editor SDC
4 Min Read
SHARE

Catalan Numbers are an interesting way of modeling the probability of ruin.

Specifically, Catalan Numbers help find the probability that a Brownian process such as equity prices will have more losers than winners at any time before the end of the period being tested. So if three trades are good and then four go bad, we would call this “ruin” because we are below the baseline. Now, for example, let’s say we want to know the odds of ruin over any 14 trades with a winning percentage of 50%. So the outcomes may look as follows (time is the horizontal and return vertical):
The formula for the probability of survival is as follows, where n=14/2=7 in this case

Solving, P=439/5040=8.5%. So with a 50/50 chance of a winning trade, you will almost certainly be down at some point during a 14 trade period.

Some of the assumptions that need to be eliminated are: the exact balancing of winning and losing trades (but in different orders), 50% odds, and the definition of ruin being down by a net of just one bet (or, equivalently, having higher starting principal than 1 wager). I will keep researching what has been done to compesate for these assumptions. The theory I’ve described so far has apparently…

More Read

IBM and Employee-Centered Social Media (study by Social Media…
The beef on how predictive analytics delivers business value
Using Web 2.0 for Analytics 2.0
Three Ways Big Data Is Revamping Manufacturing Processes
Defining Analytics: Data, Information and Knowledge


Catalan Numbers are an interesting way of modeling the probability of ruin.

Specifically, Catalan Numbers help find the probability that a Brownian process such as equity prices will have more losers than winners at any time before the end of the period being tested. So if three trades are good and then four go bad, we would call this “ruin” because we are below the baseline. Now, for example, let’s say we want to know the odds of ruin over any 14 trades with a winning percentage of 50%. So the outcomes may look as follows (time is the horizontal and return vertical):
The formula for the probability of survival is as follows, where n=14/2=7 in this case

Solving, P=439/5040=8.5%. So with a 50/50 chance of a winning trade, you will almost certainly be down at some point during a 14 trade period.

Some of the assumptions that need to be eliminated are: the exact balancing of winning and losing trades (but in different orders), 50% odds, and the definition of ruin being down by a net of just one bet (or, equivalently, having higher starting principal than 1 wager). I will keep researching what has been done to compesate for these assumptions. The theory I’ve described so far has apparently been known since 1844 so there are probably extensions floating around. One document I found already, via MIT OCW (an amazing resource; in high school I watched almost the entire Linear Algebra lecture series– good times), introduces what resembles the probability density function of a binomial random variable. This may eliminate the 50/50 odds assumption but I don’t completely understand it yet.

I think this is probably a better way to quantify risk than with VaR (i.e. standard deviation of periodic returns). In the Ralph Vince book I mentioned previously it lays out another model of a trader’s risk in terms of drawdown. It was also interesting but possibly limited by over-reliance on historical maximum drawdown. Of course every model is hamstrung by being forced to always look backwards like fortune tellers in The Inferno.

I’d like to know of any extensions of Catalan Numbers specifically to modeling risk in betting processes. As always, feel free to leave a comment on anything else too.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Researchers mine millions of metaphors through computer-based techniques

1 Min Read

What is R?

8 Min Read

Can Analytics Predict Fashion Trends?

5 Min Read
Netflix
AnalyticsBig DataPredictive Analytics

5 Valuable Insights Your Data Isn’t Telling You

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?