Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Probabilistic Matching: Part Two
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Probabilistic Matching: Part Two
Uncategorized

Probabilistic Matching: Part Two

SteveSarsfield
SteveSarsfield
6 Min Read
SHARE

Matching algorithms, the functions that allow data quality tools to determine duplicate records and create households, are always a hot topic in the data quality community. In a previous installment of the Data Governance and Data Quality Insider, I wrote about the folly of probabilistic matching and its inability to precisely tune match results.

To recap, decisions for matching records together with probabilistic matchers are based on three things: 1) statistical analysis of the data; 2) a complicated mathematical formula, and; 3) and a “loose” or “tight” control setting. Statistical analysis is important because under probabilistic matching, data that is more unique in your data set has more weight in determining a pass/fail on the match. In other words, if you have a lot of ‘Smith’s in your database, Smith becomes a less important matching criterion for that record. If the record has a unique last name like ‘Afinogenova’ that’ll carry more weight in determining the match.

The trouble comes when you don’t like the way records are being matched. Your main course of action is to turn the dial on the loose/tight control to see if you can get the records to match without affecting r…


Matching algorithms, the functions that allow data quality tools to determine duplicate records and create households, are always a hot topic in the data quality community. In a previous installment of the Data Governance and Data Quality Insider, I wrote about the folly of probabilistic matching and its inability to precisely tune match results.

More Read

Is it a tech bubble?
Change Leadership and Sales Offer Common Challenges and Solutions
The iPad and the CD-Rom
Should We Design Processes Like Airplanes?
Great IT change came with a whisper not a bang

To recap, decisions for matching records together with probabilistic matchers are based on three things: 1) statistical analysis of the data; 2) a complicated mathematical formula, and; 3) and a “loose” or “tight” control setting. Statistical analysis is important because under probabilistic matching, data that is more unique in your data set has more weight in determining a pass/fail on the match. In other words, if you have a lot of ‘Smith’s in your database, Smith becomes a less important matching criterion for that record. If the record has a unique last name like ‘Afinogenova’ that’ll carry more weight in determining the match.

The trouble comes when you don’t like the way records are being matched. Your main course of action is to turn the dial on the loose/tight control to see if you can get the records to match without affecting record matching elsewhere in the process. Little provision is made for precise control of what records match and what records don’t. Always, there is some degree of inaccuracy in the match.

In other forms of matching, like deterministic matching and rules-based matching, you can very precisely control which records come together and which ones don’t. If something isn’t matching properly, you can make a rule for it. The rules are easy to understand. It’s also very easy to perform forensics on the matching and figure out why two records matched, and that comes in handy should you ever have to explain to anyone exactly why you deduped any given record.

But there is another major folly of probabilistic matching – namely performance. Remember, probabilistic matching relies heavily on statistical analysis of your data. It wants to know how many instances of “John” and “Main Street” are in your data before it can determine if there’s a match.

Consider for a moment a real time implementation, where records are entering the matching system, say once per second. The solution is trying to determine if the new record is almost like a record you already have in your database. For every record entering the system, shouldn’t the solution re-run statistics on the entire data set for the most accurate results? After all, the last new record you accepted into your database is going to change the stats, right? With medium-sized data sets, that’s going to take some time and some significant hardware to accomplish. With large sets of data, forget it.

Many vendors who tout their probabilistic matching secretly have work-arounds for real time matching performance issues. They recommend that you don’t update the statistics for every single new record. Depending on the real-time volumes, you might update statistics nightly or say every 100 records. But it’s safe to say that real time performance is something you’re going to have to deal with if you go with a probabilistic data quality solution.

Better yet, you can stay away from probabilistic matching and take a much less complicated and much more accurate approach – using time-tested pre-built business rules supplemented with your own unique business rules to precisely determine matches.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

12 Amazing Big Data Success Stories for 2016

12 Min Read

Could Data Science Have Saved Greece?

3 Min Read

Have Fun

3 Min Read

The decline of SEO

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?