Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Unusual Data Quality Problems
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Unusual Data Quality Problems
Uncategorized

Unusual Data Quality Problems

SteveSarsfield
SteveSarsfield
6 Min Read
SHARE

When I talk to folks who are struggling with data quality issues, there are some who are worried that they have data unlike any data anyone has ever seen. Often there’s a nervous laugh in the voice as if the data is so unusual and so poor that an automated solution can’t possibly help.

Yes, there are wide variations in data quality and consistency and it might be unlike any we’ve seen. On the other hand, we’ve seen a lot of unusual data over the years. For example:

  • A major motorcycle manufacturer used data quality tools to pull out nicknames from their customer records. Many of the names they had acquired for their prospect list were from motorcycle events and contests where the entries were, shall we say, colorful. The name fields contained data like “John the Mad Dog Smith” or “Frank Motor-head Jones”. The client used the tool to separate the name from the nickname, making it a more valuable marketing list.
  • One major utility company used our data quality tools to identify and record notations on meter-reader records that were important to keep for operational uses, but not in the customer billing record. Upon analysis of the data, the company noticed random text like “LDIY” and “…


When I talk to folks who are struggling with data quality issues, there are some who are worried that they have data unlike any data anyone has ever seen. Often there’s a nervous laugh in the voice as if the data is so unusual and so poor that an automated solution can’t possibly help.

More Read

Trends in Logo Design: Understanding the Evolutionary Nature of Logos and Web 2.0
Incomplete Manifesto for Leading Change
Marketing Tips: 5 Tips for Social Media – A B2B Marketer’s Killer App
What Do Marketers Really Want in Data and Technology?
You Build it, You Break It, You Fix It: Why Applications Must Be Responsible for Data Quality

Yes, there are wide variations in data quality and consistency and it might be unlike any we’ve seen. On the other hand, we’ve seen a lot of unusual data over the years. For example:

  • A major motorcycle manufacturer used data quality tools to pull out nicknames from their customer records. Many of the names they had acquired for their prospect list were from motorcycle events and contests where the entries were, shall we say, colorful. The name fields contained data like “John the Mad Dog Smith” or “Frank Motor-head Jones”. The client used the tool to separate the name from the nickname, making it a more valuable marketing list.
  • One major utility company used our data quality tools to identify and record notations on meter-reader records that were important to keep for operational uses, but not in the customer billing record. Upon analysis of the data, the company noticed random text like “LDIY” and “MOR” along with the customer records. After some investigation, they figured out that LDIY meant “Large Dog in Yard” which was particularly important for meter readers. MOR meant “Meter in Right, which was also valuable. The readers were given their own notes field, so that they could maintain the integrity of the name and address while also keeping this valuable data. IT probably saved a lot of meter readers from dog bite situations.
  • Banks have used our data quality tools to separate items like “John and Judy Smith/221453789 ITF George Smith”. The organization wanted to consider this type of record as three separate records “John Smith” and “Judy Smith” and “George Smith” with obvious linkage between the individuals. This type of data is actually quite common on mainframe migrations.
  • A food manufacturer standardizes and cleanses ingredient names to get better control of manufacturing costs. In data from their worldwide manufacturing plants, an ingredient might be “carrots” “chopped frozen carrots” “frozen carrots, chopped” “chopped carrots, frozen” and so on. (Not to mention all the possible abbreviations for the words carrots, chopped and frozen.) Without standardization of these ingredients, there was really no way to tell how many carrots the company purchased worldwide. There was no bargaining leverage with the carrot supplier, and all the other ingredient suppliers, until the data was fixed.

Not all data quality solutions can handle all of these types of anomalies. They will pass these “odd” values without attempting to cleanse them. It’s key to have a system that will learn from your data and allow you to develop business rules that meet the organization’s needs.

Now there are times, quite frankly, when data gets so bad, that automated tools can do nothing about it, but that’s where data profiling comes in. Before you attempt to cleanse or migrate data, you should profile it to have a complete understanding of it. This will let you weigh the cost of fixing very poor data against the value that it will bring to the organization.

Covering the world of data integration, data governance, and data quality from the perspective of an industry insider.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Get gigs of disk space with a single command in Windows Server 2008R2 (and many others)

1 Min Read

Hailing Frequencies Open

7 Min Read

Bull market for SOA emerges — or should that be Red Bull market?

2 Min Read

Five Parallels Between Golf and IT Projects

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?