Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Personalizing Advertising based on a User’s Click-Through Rate
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Personalizing Advertising based on a User’s Click-Through Rate
Uncategorized

Personalizing Advertising based on a User’s Click-Through Rate

Daniel Tunkelang
Daniel Tunkelang
5 Min Read
SHARE

According to Wikipedia:

Click-through rate or CTR is a way of measuring the success of an online advertising campaign. A CTR is obtained by dividing the number of users who clicked on an ad on a web page by the number of times the ad was delivered (impressions). For example, if a banner ad was delivered 100 times (impressions delivered) and one person clicked on it (clicks recorded), then the resulting CTR would be 1 percent.

The click-through r…

According to Wikipedia:

More Read

Social Networking: Theory and Practice
If I Text You Tonight, Will Your Analytics Text Me Back in the Morning?
Data and Analytics in the Cloud Is a Reality Today
Attending Times Open
Keeping Big Data Secure: Should You Consider Data Masking?

Click-through rate or CTR is a way of measuring the success of an online advertising campaign. A CTR is obtained by dividing the number of users who clicked on an ad on a web page by the number of times the ad was delivered (impressions). For example, if a banner ad was delivered 100 times (impressions delivered) and one person clicked on it (clicks recorded), then the resulting CTR would be 1 percent.

The click-through rate measure is the key enabler for the pay-per-click (PPC) advertising model, where advertisers only pay when a user actually clicks on an advertisement to visit the advertisers’ website. A testament to the success of the PPC model is that it accounts for the overwhelming majority of Google’s $20B+ annual revenue.

Most of the attention to CTR has been ad-centric. The quality of an ad–or, rather, of how well an ad is targeted–is largely measured based on its click-through rate, average over all of the users to whom it is presented.

Google, in particular, requires advertisers with a low CTR to place a higher bid per click. The relative ranking of ads reflects a product of the bid and the CTR. This product can be interpreted in one of two ways: either combination of the advertister’s and users’ interest, or as the expected revenue that the ad will generate for Google.

But there is a different way to look at CTR. Instead of looking at the aggregate behavior for an ad across all users, why not look at the aggregate behavior for an user across all ads?

For example, consider a user who never clicks on ads. Perhaps the user is using an ad blocker that the search engine cannot detect, or the user may simply be ignoring the ads. At the other extreme, there are users who click on ads at higher than average rates (though some may be bots committing click fraud).

Of course, all user behavior is averaged  in calculating the CTR for an ad. But a user-centric view suggests a a couple of advertising personalization strategies:

  1.  Don’t bother showing ads to a user who never clicks on them, since there is no value in doing so. If ad display alone is valuable in influencing users, then there should be a cost-per-impression component, though that would require a reliable way to determine that the user actually sees the ad.
     
  2. Calibrate the threshold for ad quality (i.e., the minimum CTR across all users) to a user’s propensity to click on ads. Doing so could reduce the annoyance of people with high thresholds while increasing the ad revenue from people with low ones.

It’s clear that enough people click on ads to keep search engines in business, and that the easy availability of ad blockers (AdBlock for display ads, CustomizeGoogle for Google’s PPC ads) has not made a dent in this revenue stream. Nonetheless, showing ads to users who don’t click on them degrades user experience without generating revenue for anyone–a lose/lose.

Personalizing advertising based on a user’s demonstrated inclination to click on ads feels like a no-brainer. Has anyone tried it?

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

DQ Alert: Easy Savings by Removing Dups

3 Min Read

Host Analytics Modeling Cloud Simplifies Planning and Reporting

9 Min Read

Actionable Information Management Principles: Process

3 Min Read

The Long Tail

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?