Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Spark the Flame: The Power Behind Real Time Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Spark the Flame: The Power Behind Real Time Analytics
Predictive Analytics

Spark the Flame: The Power Behind Real Time Analytics

GilAllouche
GilAllouche
6 Min Read
Image
SHARE

ImageThe amount of information processed in the world is out of control. With almost universal access to the internet and content-rich sites like social media, more data is produced every day than was produced over centuries of human existence. There is so much data at such a dizzying pace that the human ability to perceive and act on ALL the data is insufficient.

ImageThe amount of information processed in the world is out of control. With almost universal access to the internet and content-rich sites like social media, more data is produced every day than was produced over centuries of human existence. There is so much data at such a dizzying pace that the human ability to perceive and act on ALL the data is insufficient. Fortunately computers and software programs are now able to break down terabytes of metadata into chunks that can be perceived and acted upon.

Amazingly, processing power and computing ability make it possible to process and understand information as it is received. New products like Apache Spark as a Service allow companies to analyze data seamlessly in real time, which is really the only acceptable time frame for modern operating systems. So, what exactly is Apache Spark and what advantages does it offer in the realm of big data analytics?

Every company faces a common dilemma: data. There is so much of it coming in every second of every day. All the data is valuable in some way. For retailers, it’s customer buying habits and industry trends. For technology companies, it’s keeping up with the latest technology and what consumer demand will be in the future. For healthcare, it is minimizing costs and storing patient information securely. Regardless of the industry, there is a need to make data-driven decisions to keep up with competitors and offer competitive advantages to consumers.

More Read

The “Right” Degree of Automation
First Look – Sonetto Retail
19th Century Decision Management
“Average” Statistics that Bruise Our Ears
McKinsey Says Cloud Computing ‘Makes No Sense’

What is Spark

Apache Spark is a tool used to make data-driven decisions using the Hadoop framework. Existing platforms like Hadoop, although superior for data processing, are incapable of real time analytics because they are by nature rigid. Hadoop as a platform processes information in batches, making it incapable of scaling to the volume and velocity of real time data. That is where Spark comes in. Spark connects to Hadoop computing and updates Hadoop with real time updates from a given data source in between data batches. As a product, Spark can connect to Hadoop data storage and function in the Hadoop data cluster. This keeps the data cluster constantly updated.

Live streaming data is the universally accepted standard for real time data updates. Coupled with Hadoop, there are several advantages to integrating Spark.

1) Speed-

Real time data transfers mean greater speed in accessing information. The point of real time is to cut the reaction time a company needs to respond to data received. During the recent Costco recall, if customer purchase records took two months to update, there wouldn’t have been any record to respond to the fruit recall. Speed also comes with the ease of integration into an existing data processing platform. Greater speed also allows businesses to capitalize on new means of analytics, such as this intelligent video analytics use case.

2) Shorter Data Transfer-

Spark is housed in the same cluster as Hadoop, meaning data has a shorter travel path than using a service housed outside of the cluster. A shorter travel path has many implications, including fewer processing errors and more efficiency. Speed combined with a shorter data path leads to reduced costs for a company while maintaining greater control over data as it moves.

3) Flexibility-

Spark coupled with Hadoop expands the possibilities for existing cloud resources. Real time insight gives more meaning to batch updates, especially with access to the same cloud storage. Points one and two also provide greater flexibility for companies, such as increased lead time to make decisions as circumstances change constantly.

Use of Real Time Analytics

Real time data analytics is like a burning fire. Consider this analogy. Once a spark catches, several chemical and physical changes occur. The fuel (data) is processed while heat (or data outcomes) is simultaneously emitted. Once the process of data streaming begins, it is seamless and very efficient. The process will continue to be efficient as long as data is fed into the system.

For large companies, data collection isn’t the issue. There is plenty of data collected through normal business operations. The challenge is understanding data through real time updates to the cloud computing system. Information streaming is the only way companies can keep pace with the blistering speed of life. One rogue statement by a CEO or one mis-tweet on a company Twitter account can throw an organization into crisis literally overnight. Industry changes and complicated company logistics feed the demand for real time solutions. Now it is evident that real time data isn’t just a good idea, it is a necessity.

Image Source: Deviantart.net 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News
human resource data
The Integration of Employee Experience with Enterprise Data Tools
Big Data Exclusive
protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Market Research in 3-D! – For Market Research, Social Networks Is to 2009 as what the Online Survey was in 1998

3 Min Read
Image
Predictive Analytics

Data and Dating: How Agencies are Using Big Data to Find the Perfect Match

6 Min Read

Apples and Oranges

4 Min Read

Of Risk Control and Thanksgiving Turkeys

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?