Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Saving Money and Lives With Predictive Maintenance
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Saving Money and Lives With Predictive Maintenance
Predictive Analytics

Saving Money and Lives With Predictive Maintenance

SaarYoskovitz
SaarYoskovitz
6 Min Read
SHARE

The future is now, and you can hear it.

It’s more important than ever to think about how we can employ predictive maintenance to keep everything, from our air conditioners to our cars, in working order. Most people only know of two ways to maintain machines — reactive maintenance or preventative maintenance. But these aren’t always the best or most cost-efficient processes.

Think about it in terms of risk management. You can take the risk and be surprised when a failure happens (reactive maintenance), pay an ongoing premium for scheduled preventative maintenance, or find a middle ground and optimize the process through predictive maintenance. With predictive maintenance, a facility looks for clues about the working condition of its mechanical equipment and acts accordingly before a catastrophe happens.

The biggest question then becomes: How do you observe the condition of the machine and then understand what your observations mean?

More Read

Lessons from Social Media Meet-Up, Part I – Measuring is Easy; Evaluation is Hard.
Recorded Future
Is Big Data Under Threat by New Internet Magna Carta?
The Achilles’ Heel of SaaS: the processor vendors Intel and IBM
Merry Christmas

Listening to the Problem

A number of different technologies are used in predictive maintenance today. My company, Augury, utilizes ultrasonic and vibration analysis to listen to heating, ventilation, and air conditioning systems (HVAC) in order to figure out where problems exist.

Ultrasonic diagnostics can help technicians pick up on problems and pinpoint the sources. This is the first step; the one where you can definitively say, “Something is wrong.” Similarly, with infrared thermal imaging, heat is often a quick indicator that there’s something wrong with a part in a machine.

Vibration analysis can then be used to better understand what the issue is. It will help you figure out exactly what’s wrong and how to fix it.

Oil analysis is used in conjunction with these technologies to gain better insights of the inner workings of a motor. By analyzing its oil’s properties — such as consistency, viscosity, and free metal particles — in a lab, we can point to wear and high-running temperatures.

By combining these methods into a predictive maintenance plan, a facility manager can plan ahead. That way, events where machines suddenly stop working will no longer be an issue. This translates into less downtime.

But not everyone is on board with predictive maintenance.

Jumping Hurdles

The good news about moving toward more predictive diagnostics is that it could help cut maintenance costs, reduce productivity loss, increase revenue, and even reduce energy consumption.

But some companies have not completely embraced the ideas and technologies of predictive maintenance for two main reasons: expense and training.

Historically, predicting a breakdown could be very expensive. Some of the sensing equipment could reach $20,000. And even if you have the equipment, you need someone with expertise to make it work. Vibration and ultrasonic analysis require years of training and certification to use the current systems. Setting up an in-house predictive maintenance program will cost more than $120,000 for the first year.

But these costs are worth it in the long run. While predictive maintenance can be initially expensive, the long-term price tags of preventative and reactive maintenance will dissipate — and the people who are impacted by machine downtimes will be in better shape because of it.

Saving Dollars and Lives

Due to the inherent costs of predictive maintenance, facilities tend to focus on their most critical and most expensive machines while leaving the auxiliary machines to lament their time with reactive or preventive maintenance. But a chain is only as strong as its weakest link, and in the case of HVAC, a failure can cause unexpected costs — or even the loss of lives.

Just last month, it was reported that a hospital in Dallas had air conditioners that weren’t working as they should, causing problems for newborns in the neonatal intensive care unit. Additional cooling sources were brought in to the building to prevent any issues from escalating. HVAC failures in NICUs can be the difference between life and death for newborns who can’t regulate their body temperatures as easily as adults.

With more predictive maintenance, an issue like this would have been foreseen and even prevented.

How can big data help with these types of preventive maintenance? One option is to use machine learning driven HVAC software. This technology has a great track record for boosting performance.

Luckily, the cost of predictive technology continues to drop, so everyone can continue to make strides toward this more effective and efficient model of predictive maintenance.

The only question that remains is whether you’ll be ahead or behind the future of diagnostics.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Intelligence
AnalyticsBusiness IntelligencePredictive Analytics

Business Intelligence to Deliver the Real-time Business Answers

4 Min Read

NYT: SAS facing stiff competition

4 Min Read
AnalyticsBest PracticesBusiness IntelligenceBusiness RulesCRMData ManagementData MiningData QualityData VisualizationData WarehousingMarketingMarketing AutomationModelingPredictive Analytics

The Enterprise Graph – From Connections To Customer Insights

24 Min Read

Dynamic IT

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?