Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Model Deployment and Execution Made Easy with PMML
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Model Deployment and Execution Made Easy with PMML
Data MiningModeling

Predictive Model Deployment and Execution Made Easy with PMML

MichaelZeller
MichaelZeller
4 Min Read
SHARE

Developed by the Data Mining Group (DMG), an independent, vendor led committee, PMML provides an open standard for representing data mining models. In this way, models can easily be shared between different applications avoiding proprietary issues and incompatibilities. Currently, all major commercial and open source data mining tools support PMML. These include IBM/SPSS, SAS, KXEN, TIBCO, STATISTICA, Microstrategy, R, KNIME, and RapidMiner (for a list of PMML-compliant tools, see of PMML-powered tools at DMG.org).

Developed by the Data Mining Group (DMG), an independent, vendor led committee, PMML provides an open standard for representing data mining models. In this way, models can easily be shared between different applications avoiding proprietary issues and incompatibilities. Currently, all major commercial and open source data mining tools support PMML. These include IBM/SPSS, SAS, KXEN, TIBCO, STATISTICA, Microstrategy, R, KNIME, and RapidMiner (for a list of PMML-compliant tools, see of PMML-powered tools at DMG.org).

PMML is an XML-based language which follows a very intuitive structure to describe data pre- and post-processing as well as predictive algorithms. Not only does PMML represent a wide range of statistical techniques, but it can also be used to represent input data as well as the data transformations necessary to transform raw data into meaningful features.

The PMML Converter

As part of the Data Mining Group, Zementis is committed to the continual development of PMML. It is our vision for the community that users will be free to share models among many solutions, benefiting from an environment in which interoperability is truly attainable.

More Read

R, March Madness, and the Statistics of Basketball
How Data-Driven Decision Making Is Giving Companies Competitive Advantage
Webinar on the ROI of business rules in decision management
Harvesting Data: What Is the Mood in the World?
“We are witnessing a seismic shift in information technology — the kind that comes around every…”

In this spirit, Zementis has made available a tool called the PMML Converter which converts older versions of PMML to its latest, Version 4.0. The converter is also used to validate a data mining model against the PMML specification for versions 2.0, 2.1, 3.0, 3.1, 3.2, 4.0 and 4.1. If validation is not successful, the converter gives back a file containing explanations for why the validation failed (click on the “details” button).

Before actual conversion takes place, the validation phase needs to be successful, i.e. the model file needs to conform to the PMML specification as published by the DMG (for any of the older PMML versions listed above). For known PMML issues (from a variety of sources/vendors), the PMML Converter will actually correct the model file so that it can be converted appropriately.

The PMML converter currently converts the following model elements to PMML 4.1:

  • Association Rules
  • Clustering Models
  • Decision Trees
  • General Regression Models Regression
  • Naive Bayes Classifiers
  • Neural Networks Regression Models
  • Ruleset Models
  • Scorecards
  • Support Vector Machines
  • Multiple Models: Ensemble, Composition, Segmentation and Chaining

It will also convert pre- and post-processing PMML elements.

The PMML Converter can be found in the Zementis PMML Tools page.

For more information on how to use the converter, please refer to the how-to guide.

The ADAPA Decision Engine

If you are using the Zementis ADAPA Decision Engine, there is no need to use the PMML Converter before uploading your models. That’s because ADAPA encapsulates the PMML Converter. By doing that, it understands PMML files generated by different vendors in all the different PMML versions. Besides syntactic validation, ADAPA also validates PMML from a semantic perspective.

And so, once a model is successfully uploaded in ADAPA, it is syntactically and semantically sound. For more details, click HERE.

You can benefit from ADAPA today by signing up for your private ADAPA instance on the Amazon Cloud or on the IBM SmartCloud. You can also sign up for the ADAPA free trial.

Start executing your models right now!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Thomas Jefferson on Newspaper Delivery

4 Min Read

Consolidation in the Social Business Market Continues: Salesforce.com Acquires Radian6

4 Min Read

Master Data Management: Does an Effective Solution Exist?

3 Min Read

T2: Judgment Day for Twine?

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?