By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Operational Deployment of Predictive Solutions: Lost in Translation? Not with PMML
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Operational Deployment of Predictive Solutions: Lost in Translation? Not with PMML
AnalyticsPredictive Analytics

Operational Deployment of Predictive Solutions: Lost in Translation? Not with PMML

MichaelZeller
Last updated: 2011/12/16 at 8:16 PM
MichaelZeller
3 Min Read
SHARE

Traditionally, the deployment of predictive solutions have been, to put it mildly, cumbersome. As shown in the Figure below, data mining scientists work hard to analyze historical data and to build the best predictive solutions out it. Engineers, on the other hand, are usually responsible for bringing these solutions to life, by recoding them into a format suitable for production deployment.

Traditionally, the deployment of predictive solutions have been, to put it mildly, cumbersome. As shown in the Figure below, data mining scientists work hard to analyze historical data and to build the best predictive solutions out it. Engineers, on the other hand, are usually responsible for bringing these solutions to life, by recoding them into a format suitable for production deployment. Given that data mining scientists and engineers tend to inhabit different information worlds, the process of moving a predictive solution from the scientist’s desktop to production can get lost in translation.


Luckily, the advent of PMML (Predictive Model Markup Language) changed this scenario radically. PMML is the de facto standard used to represent predictive solutions. In this way, there is no need for scientists to write a word document describing the solution. They can just export it as a PMML file. Today, all major data mining tools and statistical packages support PMML. These include IBM SPSS, SAS, R, KNIME, RapidMiner, KXEN, … Also, tools such as the Zementis Transformations Generator and KNIME allow for easy PMML coding for pre- and post-processing steps.

Great! Once a PMML file exists, it can be easily deployed in production with ADAPA, the Zementis scoring engine. ADAPA even allows for models to be deployed in the Amazon Cloud and be accessed from anywhere via web-services. Zementis also offers in-database scoring via its Universal PMML Plug-in, which is also available for Hadoop. In this way, a process that could take 6 months, now takes minutes.

More Read

AI analytics

AI-Based Analytics Are Changing the Future of Credit Cards

How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
5 Reasons to Hire a Marketing Agency that Knows Data Analytics
Using Predictive Analytics to Get the Best Deals on Amazon
Growing Demand for Data Science & Data Analyst Roles


PMML and ADAPA have transformed model deployment forever. If you or your company are still spending time and resources in deploying your predictive analytics the traditional way, make sure to contact us. The secret behind exceptional predictive analytics is out!

MichaelZeller December 16, 2011
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy
data protection for SMEs
8 Crucial Tips to Help SMEs Guard Against Data Breaches
Data Management
How AI is Boosting the Customer Support Game
How AI is Boosting the Customer Support Game
Artificial Intelligence
AI analytics
AI-Based Analytics Are Changing the Future of Credit Cards
Analytics Artificial Intelligence Exclusive

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

AI analytics
AnalyticsArtificial IntelligenceExclusive

AI-Based Analytics Are Changing the Future of Credit Cards

6 Min Read
data overload showing data analytics
Big Data

How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?

8 Min Read
hire a marketing agency with a background in data analytics
Analytics

5 Reasons to Hire a Marketing Agency that Knows Data Analytics

7 Min Read
predictive analytics for amazon pricing
Predictive Analytics

Using Predictive Analytics to Get the Best Deals on Amazon

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?