Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Avoid Screwing Up Predictive Analytic Projects
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Avoid Screwing Up Predictive Analytic Projects
Business IntelligenceDecision Management

Avoid Screwing Up Predictive Analytic Projects

JamesTaylor
JamesTaylor
5 Min Read
SHARE

There’s a great article over on Computerworld – 12 predictive analytics screw-ups.

There’s a great article over on Computerworld – 12 predictive analytics screw-ups. They asked some of my favorite data miners (John Elder and Jeff Deal of Elder Research, Eric Siegel of Prediction Impact and Dean Abbott of Abbott Analytics) what they saw as the top ways to screw up predictive analytic projects. The list of 12 is great – every one is worth committing to memory. What I want to do though is point out an effective way to avoid not one, not two but five of these problems – Decision Modeling.

Tutorial4FinalDiagramIn a decision model like the one shown to the right (based on the emerging standard for Decision Model and Notation and built using our modeling tool, DecisionsFirst Modeler) you specify how a decision will be made precisely by decomposing it into its component decisions (rectangles), you show how this decision making consumes information (ovals) and you show where the knowledge required to make a decision comes from (documents). This knowledge might be policy-based, expertise or analytically derived. Because the purpose of an analytic is to improve decision making, any analytic project can develop such a model to describe which decision(s) will be improved and where the analytic fits in this. There’s more on how to do this in our white paper.

Using Decision Modeling to describe the business requirements for a predictive analytic project helps address 5 of the 12 screw ups. Starting in best Letterman style with the end of the list:

More Read

benefits of AI in investing
AI Data, Traditional Trading, and Modern Investments
#11: Here’s a thought…
7 Mind-Blowing Facts You Didn’t Know About AI
Going Beyond Good IT: What Makes Great Business Technology?
How BI and Data Analytics Professionals Used Twitter in July

12. Don’t define clearly and precisely within the business context what the models are supposed to be doing.
As Dean Abbott said “Too many people are just trying to build good models but have no idea how the model actually will be used.” A decision model clearly defines the business context for the model – the business decision making that the model is designed to influence along with all the other influences on the decision-making.

10. If you build it they will come: Don’t worry about how to serve it up.
Decision Models make it clear how the model affects business decision making but they can also be linked to the business processes, business events and information systems that need to make those decisions. We find that once someone has a decision model it is much easier to see where that decision (and thus the analytic) will be used. From this an effective deployment strategy can be developed.

8. Ignore the subject matter experts when building your model.
Decision models help with this by modeling how expertise (and regulations, policies) matters to decision-making so it is clear what other influences there will be. By breaking down the decision-making formally into a model you can also manage the organizational relationships involved. In DecisionsFirst Modeler, for instance, we let you record which organizational unit owns each part of the decision-making, which ones make each decision and which other ones might care. This let’s you see clearly who cares about which model and why.

3. Don’t proceed until your data is the best it can be.
I often find companies that tell me they can’t do any analytics because their data is not perfectly ready. However the quality of data you need is driven in large part by the decision you are trying to influence. If the people making the decision are currently guessing then your data only has to be good enough to support a model that gives you a 60/40 prediction to be useful. If on the other hand you are already making a very precise decision then your data will have to be proportionally better.

1. Begin without the end in mind.
Or as I like to say “Begin with the decision in mind.” The value of predictive analytics comes from improving decision-making. Begin by focusing on the decision you wish to improve and use that to drive your predictive analytic projects.

Decision modeling has a lot to offer analytic projects so why not read our white paper on Decision Requirements Modeling for Analytic Projects or contact us to learn about Decision Management for Predictive Analytics Projects.

P.S. It works for BI projects too….

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Analytics and the Importance of Socializing Your Data

4 Min Read

How to Use Big Data to Increase Social Proof

6 Min Read
role of ai and big data in databases
Big Data

Artificial Intelligence and the Future of Databases in the Big Data Era

4 Min Read

Marcus Borba’s Business Intelligence Predictions for 2011

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?