Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – IBM In-Database Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > First Look – IBM In-Database Analytics
AnalyticsBusiness IntelligenceModeling

First Look – IBM In-Database Analytics

JamesTaylor
JamesTaylor
5 Min Read
SHARE

IBM SPSS has been supporting in-database analytic modeling for a while now. Their objective is to make it possible for analysts to run the complete data mining process end-to-end in-database – from accessing the data to data transformation and model building/scoring. In particular, they try to enable analysts to push data transformation and data preparation into the database as these are typically a big part of data mining projects.

IBM SPSS has been supporting in-database analytic modeling for a while now. Their objective is to make it possible for analysts to run the complete data mining process end-to-end in-database – from accessing the data to data transformation and model building/scoring. In particular, they try to enable analysts to push data transformation and data preparation into the database as these are typically a big part of data mining projects. To achieve in-database execution they provide three main features – SQL Pushback, direct access to a database’s own analytic modeling routines and model deployment/scoring options.

To build a predictive analytic model in IBM SPSS Modeler, an analyst creates an analytic workflow. This consists of multiple tasks or nodes to read, merge or transform data; split data into different test sets; apply modeling algorithms and more. SQL Pushback takes the nodes in this workflow that relate to data access and transformation and pushes them to the database. The tool generates the SQL you need for these steps and executes that SQL on the database from which you sourced the data. This SQL is specific to the database concerned for the main supported databases (IBM DB2, Microsoft SQL Server, Netezza, Oracle, Teradata) and generic SQL is available for many nodes for other databases.

IBM SPSS Modeler also reorders work streams to maximize the effectiveness of this SQL, particularly in terms of keeping the data in the database. For instance if multiple nodes that can be executed in-database are separated by one that cannot be then the nodes will be re-ordered to group the in-database nodes where this is possible.

More Read

Using Social Media Contests & Research for Lead Generation
Federal Government Working to Promote Faster Adoption of Cloud Computing
How Big Data and Hadoop Training Programs Can Make a Big Difference
Business Intelligence: CSI Forensics or Crystal Ball?
How Analytics Can Propel IT to be the New ‘It’ Group

When In-database execution is possible for a node in the workflow it is color-coded purple to show this – modelers with strong database servers will try and turn “all the nodes purple” so that everything is being done in database. Some customers write raw SQL to use more extended functions like statistics functions that would not automatically be pushed back. SQL Pushback can be turned off so that high load production environments don’t get slowed by in-database analytics and users can decide to cache intermediate results in a database table simply by selecting a node and asking for caching.

The second element of in-database analytic modeling is to build the model itself in-database. For this IBM SPSS Modeler Building use the analytic routines in Oracle (the ODM algorithms), Microsoft SQL Server, DB2 and InfoSphere Warehouse as well as (since the 14.2 release in June) Netezza. These in-database algorithms are presented as new node types in the workflow, allowing a modeler to simply select them as part of their usual workflow. In addition IBM SPSS Modeler has its own algorithms that can be used on the modeling server. These in-database algorithms allow data in the database to be scored and some allow the model to be calculated live when the record with which it is associated is retrieved. These in-database algorithms are typically parallelized by the database vendor and IBM SPSS Modeler inherently takes advantage of this.

IBM SPSS Modeler supports a number of other deployment options besides the use of these in-database routines. A number of the standard IBM SPSS routines can generate SQL for scoring in-database – the model is built outside the database but the SQL allows the scoring to be done in-database once the model is built. Several of these routines support parallel execution on the modeling server. Models, no matter how they were built, can also be deployed using Scoring Services and made available using a web services interface for live scoring. Models can also be deployed using IBM SPSS Decision Management.

Don’t forget the Decision Management Technology Map

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Analytics

Stream vs. Batch Processing: Which One is the Better Business Operations GPS?

4 Min Read

The Future of Data Science

4 Min Read

Repurposing Your Data Warehouse Platform—Not!

4 Min Read

The Use and Abuse of Big Data

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?