Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Deep Learning and Context Based Intelligent Search
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Deep Learning and Context Based Intelligent Search
Business IntelligenceData Mining

Deep Learning and Context Based Intelligent Search

Editor SDC
Editor SDC
7 Min Read
SHARE

Enterprises have a treasure trove of content in the form of Word documents, pdfs, emails, text files etc . Finding valuable information in these unstructured data has always been difficult. Traditional enterprise search engines have always been about creating indexes for all the words or phrases in the documents and using it to search and return results. Most search engines are rules based and will try to match the search query using regular expressions to the content in the text.

Enterprises have a treasure trove of content in the form of Word documents, pdfs, emails, text files etc . Finding valuable information in these unstructured data has always been difficult. Traditional enterprise search engines have always been about creating indexes for all the words or phrases in the documents and using it to search and return results. Most search engines are rules based and will try to match the search query using regular expressions to the content in the text.

Examples below are with the assumption that a search is happening on Auto Insurance Organization on Claim Notes. For example, if the user is searching for the word “Whiplash”, results will contain text which has a partial match for the search term such as:

More Read

The Newest Market Research Trade Organization
R: From zero to Web 2.0 in six weeks
Finding the Right Sponsor for Your Big Data Project
It’s Magic
Scenario Testing, Stress Testing and Decision Management
  • “Insured has Whiplash Head and Neck”
  • “Claimant had whiplash injury”

These searches don’t understand the context of what the user is searching for. Most of the time users start with a keyword or phrase to search, and they actually want some information related to it.

What if the search itself is intelligent enough to find these results without building an index, and find related information of the keywords or phrases used for search?

Business users need an effective tool to search for information retrieval. For example, claims adjustors may want to know how whiplash claims are settled to help them with their losses to the policyholder in a timely fashion. This search tool will increase customer satisfaction and improve the claims adjustor’s performance.

Understanding Text

This goes back to the age old problem of the computer’s ability to understand and crunch numbers. A CPU does floating point calculations. If it has to understand text, it has to be explicitly instructed on how to process the text. For search to be intelligent, text has to be represented in a form that computers understand, which is  “numbers”. The process of converting text to numbers varies, with the most common being the “Bag of Words Model.”

For example, “The insured vehicle “ambulance” is a 2007 Chevrolet model G3500 Type III ambulance.”

Words are extracted from the above sentence – “Insured”, “Vehicle”, “2007”, “Chevrolet”, “model”, “G3500”, “Type”, “Ambulance”. Value is assigned in the below table based on Word frequency

Blog_Table_1

The disadvantages of this approach are

  • It says nothing about the order of the words in the original text.
  • It says nothing about the context of the text.
  • It says nothing about the meaning of the words.

For example, the computer may think that “type”, “ambulance”, and “vehicle” are equivalent, although “ambulance” and “vehicle” are mostly equivalent and “type” is something different. To address this problem we need a model which understands context of the text.

Deep Learning to the Rescue

Deep Learning is a branch of Machine learning. It is Neural Networks with multiple hidden layers. Deep Learning makes a machine think for itself.

Usually, in traditional machine learning algorithms, we try to predict the dependent variable “y” from the independent variable “x”. Auto-Encoder is a kind of neural network which uses an unsupervised learning method to predict the independent variable “x” from the independent variable “x”. AutoEncoder learns about the data and patterns in the data and creates a representation for the data.

Auto Encoders can be used to create word embeddings or Paragraph2Vec to convert text to Vector format.

How Word2Vec Works?

Blog_Table_5

  • When given the text, it looks at each word and the words around it.
  • In this way, it trains itself on the text, and recognizes the order of each word, and the structure of the sentences.
  • The training is done using Deep Learning autoencoder with 1 hidden layer. Even though it is called Deep Learning, it is actually quite shallow.

At the end of training, each word is represented by an N-dimensional vector, where N is typically in the hundreds.

Architecture for Search

Blog_Table_2

Above diagram shows proposed Architecture for using Deep Learning for Search.

  1. Parser converts files from Word, PDF, Text file to *.txt format for Vectorization process to read.
  2. Vectorization Engine converts *.txt files to format into Vectors of “n” dimension.
  3. Document Vectors Database to persist the Vectors for later uses.
  4. Linear Algebra based Search Engine which can do searches on Vectors using linear algebra operations.

Deep Learning for Search

Cosine similarity between two vectors can be used as a way to search for content in the documents that were converted to Vectors.

For e.g. Search for keyword “Whiplash” in the above said example of claim notes, below will be the context decided by the Deep Learning algorithm.

Blog_Table_3

Based on how the words occurred in the original text, AutoEncoder was able to construct a good representation of words. It was able to equate whiplash as neckback, headache, concussion, soreness, neck, spasms etc. See below for the search results.

Blog_Table_4

Rows are ranked by co-sine similarity, top 4 rows returned didn’t have word whiplash in it, but if you read through, it is describing whiplash injuries. There were no deterministic rules that were configured to equate whiplash to neck and back injuries.

Word Embedding’s learned from AutoEncoders can be used for intelligent search of a treasure trove of Word documents, pdfs, emails etc. This would help in accurate information retrieval saving lot of time for users looking for information.

Learn more about our solution Fluid Analytics that uses machine learning for predictive Analytics.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic
multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Planning for the turned-around economy? Cloud Computing and SaaS can help.

4 Min Read

Business Rules vs Programming

3 Min Read

What I Learned about BI at SAP World Tour UK 2010

6 Min Read
AI-driven video editing
Artificial Intelligence

The Surprising Benefits Of AI-Driven Video Conferencing In Education

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?