By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Data Visualization Doesn’t Need to be Biased
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > R Programming Language > Data Visualization Doesn’t Need to be Biased
R Programming Language

Data Visualization Doesn’t Need to be Biased

DavidMSmith
Last updated: 2011/09/24 at 2:40 PM
DavidMSmith
4 Min Read
SHARE

At the FlowingData blog, data visualization commentator and Visualize This author Nathan Yau lists 5 misconceptions about visualization:

At the FlowingData blog, data visualization commentator and Visualize This author Nathan Yau lists 5 misconceptions about visualization:

  • Software does everything (Nathan notes “Personally, I use a lot of R and have a lot of fun in Illustrator”, but uses a lot of other tools as well.)
  • Visualization is for making data flashy
  • The more information in a single graphic, the better
  • It has to be exact
  • Visualization is too biased to be useful

I agree completely with Nathan’s comments on the last point above:

More Read

programming languages for corporate database

Choosing the Right Programming Language for A Corporate Database

5 Free Programming and Machine Learning Books for Data Scientists
Is R the Next Generation Programming Language for Big Data?
Apache Drill vs. Apache Spark: What’s The Right Tool for the Job?
What Angry Birds Can Teach Us About Analytics

There’s a certain amount of subjectivity that goes into any visualization as you choose what data to show and how to show it. By focusing on one part of the data, you might inadvertently obscure another. However, if you’re careful, get to know the data that you’re dealing with, and stay true to what’s there, then it should be easier to overcome bias.

After all, statistics is somewhat subjective, too. You choose what you analyze, what methods to use, and pick what to point out in reports.

News organizations, for example, have to do this all the time. They get a dataset, decide what story they want to tell (or find what story the data has to tell). Browse through graphics by The New York Times, and you can see how you can add a layer of information that objectively describes what the data is about.

This stands in contrast to the presentation I saw today at the Strata conference from Alex Lundry, Chart Wars: The Political Power of Data Visualization. (You can see a shorter version of his talk online). It was an entertaining talk, but his main point was to encourage data visualization partitioners to actively insert a point of view into the presentation of data. For example, he encourages more charts like the one on the right below, rather than the one on the left.

Usefuljunk-costs Usefuljunk-monster
(Images from Nigel Holmes’ paper, Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts.)

Lundry’s take is that because the image on the right is more easily recalled by those who have seen it, it’s naturally better. I disagree. My objection to the chart on the right isn’t just that uses chartjunk, nor that the teeth are disporoportionately sized to the values, nor even that the X “axis” is slanted upwards to exaggerate the rise. My objection is the chart on the right is that it actively pushes an analysis upon the viewer. As Nathan notes, there’s always an element of bias in what data is selected to be presented, and the way it’s presented. But good charts merely present data, and leave the analysis (obvious though it may be) to the viewer. When a chart takes on the burden of analysis for the viewer, that’s when it strays from data visualization into propaganda.

FlowingData: 5 misconceptions about visualization 

DavidMSmith September 24, 2011
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

programming languages for corporate database
ExclusiveProgrammingR Programming Language

Choosing the Right Programming Language for A Corporate Database

6 Min Read
free python machine learning ebooks
Big DataBusiness IntelligenceData ScienceR Programming Language

5 Free Programming and Machine Learning Books for Data Scientists

8 Min Read
Next Generation Programming Language for Big Data
Big DataComputingExclusiveITR Programming Language

Is R the Next Generation Programming Language for Big Data?

8 Min Read
Image
Big DataData MiningHadoopR Programming LanguageSQLUnstructured Data

Apache Drill vs. Apache Spark: What’s The Right Tool for the Job?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?