By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: The Data Budget
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Inside Companies > The Data Budget
Inside Companies

The Data Budget

DeanAbbott
Last updated: 2010/10/24 at 5:43 PM
DeanAbbott
4 Min Read
SHARE
- Advertisement -

Larger quantities of data permit greater precision, greater certainty and more detail in analysis. As observation counts increase, standard errors decrease and the opportunity for more detailed- perhaps more segmented- analysis rises. These are things which are obvious to even junior analysts: The standard error of the mean is calculated as the standard deviation divided by the square root of the observation count.

Larger quantities of data permit greater precision, greater certainty and more detail in analysis. As observation counts increase, standard errors decrease and the opportunity for more detailed- perhaps more segmented- analysis rises. These are things which are obvious to even junior analysts: The standard error of the mean is calculated as the standard deviation divided by the square root of the observation count.

This general idea may seem obvious when spoken aloud, but it is something which many non-technical people seem to give little thought. Ask any non-technical client whether more data will provide a better answer, and the response will be in the affirmative. It is a simple trend to understand.

However, people who do not analyze data for a living do not necessarily think about such things in precise terms. On too many occasions, I have listened to managers or other customers indicate that they wanted to examine data set X and test Y things. Without performing any calculations, I had strong suspicions that it would not be feasible to test Y things, given the meager size of data set X. Attempts to explain this have been met with various responses. To be fair, some of them were constructive acknowledgments of this unfortunate reality, and new expectations were established. In other cases, I was forced to be the insistent bearer of bad news.

More Read

Data Scientists

What Aspiring Data Scientists Are Looking For in Hiring Companies

5 Innovative and Diverse Uses of Big Data
Learn from Carnegie Mellon’s School of Data Management Hard Knocks
Intacct Improves Cloud of Collaboration, Payments and Reporting
Robot HR: How HR is Contributing to Unemployment

In one such situation, a data set with less than twenty thousand observations was to be divided among about a dozen direct mail treatments. Expected response rates were typically in the single-digit percents. Treatments were to be compared based on various business metrics (customer spending, etc.). Given the small number of respondents and high variability of this data, I realized that this was unlikely to be productive. I eventually gave up trying to explain the futility of this exercise, and resigned myself to listening to biweekly explanations the noisy graphs and summaries. One day, though, I noticed that one of the cells contained a single observation! Yes, much energy and attention was devoted to tracking this “cell” of one individual, which of course would have no predictive value whatsoever.

It is important for data analysts to make clear the limitations of our craft. One such limitation is the necessity of sufficient data from which to draw reasonable and useful conclusions. It may be helpful to indicate this important requirement as the data budget: “Given the quality and volume of our historical data, we only have the data budget to answer questions about 3 segments, not 12.” Simply saying “We don’t have enough data” is not effective (so I have learned through painful experience). Referring to this issue in terms which others can appreciate may help.

DeanAbbott October 24, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Data Scientists
Big DataExclusiveInside CompaniesITJobs

What Aspiring Data Scientists Are Looking For in Hiring Companies

7 Min Read

5 Innovative and Diverse Uses of Big Data

8 Min Read
Image
AnalyticsData ManagementData QualityInside CompaniesRisk Management

Learn from Carnegie Mellon’s School of Data Management Hard Knocks

3 Min Read

Intacct Improves Cloud of Collaboration, Payments and Reporting

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?