Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Companies Test Possibilities and Limits of AI in Research and Product Development
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Artificial Intelligence > Companies Test Possibilities and Limits of AI in Research and Product Development
Artificial IntelligenceExclusive

Companies Test Possibilities and Limits of AI in Research and Product Development

AI is becoming invaluable to the R&D process, but it can’t solve every challenge.

Alexander Bekker
Alexander Bekker
7 Min Read
AI limitations
DepositPhotos Licensed Photo - 146165997
SHARE

AI is a game-changing technology that has drastically changed how companies do business. Recent advances have enabled companies to use AI in ways they never have before. It’s not just about improving existing products; it’s also about discovering new possibilities they didn’t know existed. 

Contents
Use of AI in ResearchGenerative DesignAssembly Line OptimizationAutomated Testing of FeaturesQuality AssuranceThe Limitations Of AIMassive Data Labeling and Training Data SetsBias in Data and AlgorithmsThe Explainability ProblemCostFinal Thoughts

AI helps companies find ways to improve their product development processes. AI can predict future trends, identify customer needs, and determine which products will be most profitable for your company.

This article explores the possibilities and limits of AI in research and development.

Use of AI in Research

Research and development (R&D) is a critical component for any business, especially in today’s data-dependent competitive world. Companies get valuable insights from research on improving their products and processes to meet customers’ needs and remain competitive. But then, there is a vast amount of information available that researchers need to analyze and synthesize when creating a new product. As such, companies must resort to efficient and fast product development technologies to conduct research and respond to the changing dynamics of the marketplace. And that’s where AI comes in handy. 

More Read

devops options for data-driven software
Low Code DevOps Opportunities for Data Scientists & Developers
6 Simple Steps to a Big Data Strategy
How Online Stock Trading is Being Impacted by Big Data
10 Stellar Ways Big Data And PPC Campaigns Work Together
How Big Data Can Maximize Your Influencer Marketing Campaign Outcomes

Companies are using AI technologies to automatically analyze large amounts of data and identify patterns that would not be obvious to a human analyst. These patterns could then be used as the basis for additional experimentation by scientists or engineers. Product development Seattle companies can find solutions that humans may not have considered because they are too complex or abstract.

Generative Design

Generative design is a new approach to product development that uses artificial intelligence to generate and test many possible designs. These designs are analyzed to select the most promising ones. The technique is helping product design firm Seattle reduce costs and improve the quality of its products. It’s applicable in software design, architecture, and medicine, among other industries. 

Assembly Line Optimization

Assembly line optimization is a process that allows companies to identify and optimize their production processes, from the design phase to the assembly line. Product development San Francisco firms are using artificial intelligence (AI) to predict how well a product will perform as it moves through different production phases.

In addition to helping companies identify problems with their products before they occur, AI can also help them determine how long it will take for each part to reach completion once it has entered production. This can be useful when deciding whether enough resources are available at one facility or another. 

Automated Testing of Features

When creating a product or service, an organization may need to test its features. The company can use AI to automate this process and find out whether these features are working as intended. The goal is to verify that the features work as they were intended and to ensure that they do not cause problems with other parts of the product. AI can help the company save time, money, and effort when testing products and services.

Quality Assurance

Quality assurance (QA) is an integral part of the life cycle management of products and services. It involves tasks such as inspection, testing, and evaluation. QA teams are now using AI to help them with everything from testing to customer service. AI algorithms can check and validate if a product meets QA in real-time, significantly easing the process.

The Limitations Of AI

Though AI has many benefits in product R&D, it has some limitations in application. Below are some of them:

Massive Data Labeling and Training Data Sets

AI requires massive amounts of data labeling and training data sets to learn what is normal versus abnormal. Data labeling takes a lot of time and personnel, which can be costly. Also, obtaining large amounts of data sufficient to train an AI model can be challenging.

Bias in Data and Algorithms

If the data and algorithms companies use to train AI are inherently biased, that can lead to some big problems. One typical example of bias in data is the issue of racial profiling. If you’re training an AI program to recognize certain things (like faces), then it’s going to learn what humans have told it about those faces. And if people have been tagging those faces as “criminal,” then the AI will think that people who look like that are criminals. In the end, AI can cause a business more harm than benefits it wants to achieve.

The Explainability Problem

The Explainability Problem is the inability of machine learning systems to explain their decision-making processes. This is a serious issue, making it impossible for humans to understand how an AI system reaches its conclusions. Also, it’s difficult to determine whether an algorithm has been trained on biased data or if it uses outdated or inappropriate data sources.

Cost

Another limitation of AI in research and development is cost. The technology is expensive, and the time it takes to train an AI system can be prohibitively long. In addition, many companies don’t have the resources to train and maintain AI software.

Final Thoughts

AI is here to stay, and its future is bright. It is revolutionizing how companies approach research and product development. From data processing to feature testing and QA,  AI can help companies create better products. However, companies should continually look for ways to address AI limitations.

TAGGED:limits of AI
Share This Article
Facebook Pinterest LinkedIn
Share
ByAlexander Bekker
Follow:
Alexander Bekker is a Head of Database and BI Department at ScienceSoft. With 18 years of experience, Alexander focuses on BI solutions (data driven applications, data warehouses and ETL implementation, data analysis and data mining) in retail, healthcare, finance, and energy industries. He has been leading such large projects as private labels product analysis for 18,500+ manufacturers, global analytical system for luxury vehicle dealers and more.

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?