Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Coalesce Missing Data to Highlight the Unknown
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Coalesce Missing Data to Highlight the Unknown
Big DataModeling

Coalesce Missing Data to Highlight the Unknown

Editor SDC
Editor SDC
4 Min Read
SHARE

Missing data can be a pain; having missing data and not knowing where it is can be even more of a pain. Here is a quick tip for potentially handling missing values during an ETL process, or during any data processing step, and how to quickly spot them. Mileage may vary depending on the business requirements for processing your data.

Contents
  • Coalesce the Missing Values
  • Identify Missing Data when Loading a Dimensional Model

Missing data can be a pain; having missing data and not knowing where it is can be even more of a pain. Here is a quick tip for potentially handling missing values during an ETL process, or during any data processing step, and how to quickly spot them. Mileage may vary depending on the business requirements for processing your data.

Coalesce the Missing Values

The coalesce function (alternatively the coalesceC function for character values) is very useful for selectively loading a field depending on the state of data.  The parameters are simple.  Just reference variables in your data or explicit hard-coded values and the coalesce function picks the first non-missing value for that observation.  It selects based on the order variables are entered, from left to right.

coalesce( [first variable], [second variable], .... , [Nth variable])

Sometimes I hard-code the following values at the end of the coalesce parameter list to ensure something gets entered (depending on requirements):

More Read

Data Governance & Quality Rock Stars
Top 10 Data Management Issues for 2009
The Data Discovery: Investing in Customer Insight
How will Analytics and the Internet of Things Influence Marketing in Coming Years?
How BI and Data Analytics Professionals Used Twitter in November
  • !UNKNOWN
  • !MISSING
  • !HEY LOOK AT ME

Using these standardized values can help the business spot missing values very quickly, especially if you use a special character such as the exclamation point which sorts missing values at the top when viewing in ascending order.  

The following code fills missing values of ‘DeathCause’ in the SASHELP.HEART dataset:

data out; set SASHELP.HEART; DeathCause = coalesceC(DeathCause, '!UNKNOWN'); run;

The missing values are converted to !UNKNOWN:

Big data solution

Identify Missing Data when Loading a Dimensional Model

Coalescing missing foreign key values can also be useful when loading a dimensional model.  In a star schema, categorical values are stored in dimension tables with corresponding foreign keys that references these values from fact tables.   The purpose of foreign keys is to describe the factual numeric values contained in the fact table by joining to the related dimension table.  A good best practice is to always load explicit non-NULL foreign key values to ensure numeric data is always identified and because your DBA may not like NULL values within integrity constraints.  If a numeric value truly has a missing dimension, you can use the coalesce function to stage a “zero” value for the foreign key in a fact table.  You could also use a value of “-1″ as the “missing” foreign key value.  This also acts as a “catch all” to make sure the ETL process completes with no errors due to attempting to insert a missing or NULL value in a fact table. 

This is an example DIMENSION table I’m using to reference address locations in a fact table.  

missing data Values

The fact table can reference the ‘address_key’ of 0 for anything that is missing or unknown.

These are two ways I’ve used the COALESCE() and COALESCEC() functions.  Do you have any other uses?

TAGGED:missing data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?