Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Like Big Data, Operational Intelligence is Evolving to Deliver Right Time Value
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Like Big Data, Operational Intelligence is Evolving to Deliver Right Time Value
Business Intelligence

Like Big Data, Operational Intelligence is Evolving to Deliver Right Time Value

Tony Cosentino
Tony Cosentino
5 Min Read
SHARE

Ventana Research has been researching and advocating operational intelligence for the past 10 years, but not always with that name.

Ventana Research has been researching and advocating operational intelligence for the past 10 years, but not always with that name. From the use of events and analytics in business process management and the need for hourly and daily operational business intelligence, but its alignment with traditional BI architecture didn’t allow for a seamless system, so a few years later the discussion started to focus around business process management and the ability of companies to monitor and analyze BPM on top of their enterprise applications.

Business activity monitoring became the vogue term, but that term did not denote the action orientation necessary to accurately describe this emerging area. Ventana Research had already defined a category of technology and approaches that allow both monitoring and management of operational activities and systems along with taking action on critical events. Today, Ventana Research defines Operational Intelligence as a set of event-centered information and analytics processes operating across the organization that enable people to take effective actions and make better decisions.

The challenge in defining a category in today’s enterprise software market is that prolific innovation  is driving a fundamental reassessment of category taxonomies. It’s nearly impossible to define a mutually exclusive and combinatorially exhaustive set of categories, and without that, there will necessarily be overlapping categories and definitions. Take the category of big data; when we ask our community for the definition, we get many perspectives and ideas of what big data represents.

More Read

We Need an “Internet of Not Only Customers”
Look Smarter Than You Are
elsua: “An introduction to the social ‘stack’” by the ever…
Top Five Benefits of a Data Warehouse
Marketing Execs VS Market Research Execs

Operational intelligence overlaps in many ways with big data. In technological terms, both deal with a diversity of data sources and data structures, both need to provide data in a timely manner, and both must deal with the exponential growth of data.

Also, business users and technologists often see both from different perspectives. Much like the wise men touching the elephant, each group feels that OI has a specific purpose based on their perspective. The technologist looks at operational intelligence from a systems and network management perspective, while business users look at things from a business performance perspective. This is apparent when we look into the data sources used for operational intelligence: IT places more importance on IT systems management (79% vs. 40% for business), while business places more importance on financial data (54% vs. 39% for IT) and customer data (40% vs. 27% for IT). Business is also more likely to use business intelligence tools for operational intelligence (50% vs. 43%), while IT is more likely to use specialized operational intelligence tools (17% vs. 9% for business).

The last and perhaps biggest parallel is that in both cases, the terms are general, but their implementations and business benefits are specific. The top use cases in our study for operational intelligence were managing performance (59%), fraud and security (59%), compliance (58%) and risk management (58%). Overall we see relative parity in the top four, but when we drill down by industry, in areas such as financial services, government, healthcare and manufacturing, we see many differences. We conclude that each industry has unique requirements for operational intelligence, and this is very similar to what we see with big data.

It is not surprising that our definition of operational intelligence is still evolving. As we move from the century of designed data to the century of organic data (terminology coined by Census Director Robert Groves), many of our traditional labels are evolving. Business intelligence is beginning to overlap with categories such as big data, advanced analytics and operational intelligence. As I discussed in a recent blog post, The Brave New World of Business Intelligence, the business intelligence category was mature and was showing incremental growth only a few years ago, but it is difficult to call the BI category mature any longer.

Based on the results of our latest operational intelligence benchmark research, we feel confident that our current definition encompasses the evolving state of the market. As operational intelligence advances, we will continue to help put a frame around it. For now, it acts very much like what might be called “right-time big data.”

Regards,

Tony Cosentino

VP & Research Director

TAGGED:Big Data Impacts
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data helps finding new customers
Big Data

How Big Data Helps in Finding Out Your Best Customers?

10 Min Read

Big Data Defined for 2013: A Definition That Can Help in Your Interaction with the IT Community

3 Min Read

Mark Zielinski on Making Use of Big Data Now

7 Min Read

Big Data After the Hype

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?