By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Big Data Analytics: Think Differently To Maximize Value
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Big Data Analytics: Think Differently To Maximize Value
AnalyticsBig DataBusiness Intelligence

Big Data Analytics: Think Differently To Maximize Value

BillFranks
Last updated: 2013/03/15 at 5:30 AM
BillFranks
7 Min Read
SHARE

big data analyticsThere are many challenges to incorporating big data into analytic processes – technical, skill set, and cultural challenges for example. But you must also consider the challenge of thinking differently about the analytics you need to do and how you will go about doing them.

big data analyticsThere are many challenges to incorporating big data into analytic processes – technical, skill set, and cultural challenges for example. But you must also consider the challenge of thinking differently about the analytics you need to do and how you will go about doing them.

You can’t just focus on how big data can improve existing processes or methods for solving the same old problems. You also can’t just focus on the totally new problems big data can help you address. You must look for ways that big data can enable an entirely new approach to addressing an existing problem. This last point is what I will focus on here.

How Big Data Can Change Longstanding Standards

More Read

analyst,women,looking,at,kpi,data,on,computer,screen

What to Know Before Recruiting an Analyst to Handle Company Data

Tackling Bias in AI Translation: A Data Perspective
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
How AI is Boosting the Customer Support Game
AI-Based Analytics Are Changing the Future of Credit Cards

In the pharmaceutical industry, the longstanding method of assessing drugs is the use of clinical trials. Clinical trials are a gold standard for sound analytics. In a clinical trial, true treatment and control groups are created in a setting where participating patients and doctors don’t know what drug a participant is getting. As many external factors as possible are accounted for up front so that the impact of the drug can be assessed accurately. The methodology is rock solid and it is the only approach allowed in many cases to prove the safety and effectiveness of a drug.

Clinical trials have drawbacks, however. They are insanely expensive, for one thing. They also typically end with fairly small sample sizes. After years of effort and hundreds of millions of dollars, a study can be lucky to end with a sample of just two or three thousand patients. While the studies are very effective at identifying precisely the impact of the drug being tested on the ailment for which it is targeted, the sample size and study design don’t lend themselves to exploring a lot of additional factors.

Now consider electronic medical records. Over time, it will be possible to track years of medical history across millions of patients. Once a new drug comes out, these records can be utilized to mine for unexpected positive and negative drug interactions and unforeseen impacts on other health conditions. Certainly, the data won’t have all of the controls to ensure that correlations found are truly causal. However, if you’ve seen 50,000 people take a drug for 5 years and you see a recurrent pattern of those patients having a high incidence of some positive or negative experience, you can be fairly confident that something worth investigating further is going on.

While it may take additional work to confirm the findings, including perhaps a formal clinical trial, the ability to identify the right places to look will be increased exponentially. It isn’t that this data will replace clinical trials for new medications, but it can speed identification of additional risks or benefits of a medication after release. Historically, unless a drug had a massive side effect that wasn’t anticipated, it could take years for a positive or negative interaction to be identified. There was a dependency on hearing enough anecdotal feedback from doctors for the pattern to be found. With electronic medical records, it will be possible to analyze thousands or millions of people taking a drug from day one and identify good and bad side effects much more quickly. All of this assumes the medical data is anonymized for privacy reasons, of course.

The Implications

The point of the example above is to demonstrate how the way we view and execute analytics to assess a drug’s impact can change and improve time to value dramatically. In addition to the rigorous clinical trials, immense value can be found in the masses of data that, while not scientifically controlled, will contain enough information on enough patients with enough combinations of ailments and prescriptions to shine a light on unexpected effects. Utilizing data from an uncontrolled environment may not be how it is done today, but the power of the large samples of patients with diverse conditions is too much to ignore.

Within your own organization, be sure to look for opportunities to totally rethink how you apply analytics to important areas of your business. Are there ways that big data can allow you to come at a problem from a completely different direction to enhance what you’re doing today? In many cases, the answer is yes.

The action I’d like you to consider is to ensure that your conversations around big data don’t involve just how to use it within existing processes or how to use it to tackle entirely new problems. These two conversations are critical and can drive a lot of value. However, the third conversation you need to have, which many forget, is where big data can enable an entirely new approach to addressing an existing problem. A problem you’ve written off as “solved” may not be as solved as it used to be if you reexamine it in the context of the data available today.

Originally published by the International Institute for Analytics

BillFranks March 15, 2013
Share This Article
Facebook Twitter Pinterest LinkedIn
Share
By BillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance
analyst,women,looking,at,kpi,data,on,computer,screen
What to Know Before Recruiting an Analyst to Handle Company Data
Analytics
data perspective
Tackling Bias in AI Translation: A Data Perspective
Big Data
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

analyst,women,looking,at,kpi,data,on,computer,screen
Analytics

What to Know Before Recruiting an Analyst to Handle Company Data

6 Min Read
data perspective
Big Data

Tackling Bias in AI Translation: A Data Perspective

9 Min Read
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best PracticesBig DataData CollectionData ManagementPrivacy

Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices

7 Min Read
How AI is Boosting the Customer Support Game
Artificial Intelligence

How AI is Boosting the Customer Support Game

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?