Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The ABCs of In-Memory Processing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The ABCs of In-Memory Processing
Business Intelligence

The ABCs of In-Memory Processing

Brett Stupakevich
Brett Stupakevich
5 Min Read
SHARE

j03995511 150x150 photo (in memory processing)

A:  What is it?

In-memory processing is a fairly simple yet very powerful innovation.  Here’s how it works:

More Read

Top Five Benefits of a Data Warehouse
Top Five Benefits of a Data Warehouse
Digital Universe Study: Extracting Value from Chaos
PAW: Predictive Modeling for E-Mail Marketing
Integrating Predictive Analytics and BRM to Improve Health Plan Member Experience
Social business is not “just” about communicating better!

j03995511 150x150 photo (in memory processing)

A:  What is it?

In-memory processing is a fairly simple yet very powerful innovation.  Here’s how it works:

Retrieving data from disk storage is the slowest part of data processing.  And the more data you need to work with, the more the retrieval step slows down the analytics process.  The usual way of addressing this time problem has been to pre-process data in some way (cubes, query sets, aggregate tables, etc.) so the computer can “go get” a smaller number of records.  But those approaches typically require guessing in advance what data should be selected, and how it should be arranged for analysis.  If/when the analyst needs more or different data, it’s back to the drawing-board. 

In-memory processing eliminates the “go get” step completely, because for analytical purposes all the relevant data is loaded into super-speedy RAM memory all the time, and therefore does not have to be accessed from disk storage.  So the time factor changes dramatically.  Plus, it’s possible to see the data more flexibly and at a deeper level of detail, rather than in pre-defined high-level views.

B:  Why does it matter?

Basically, in-memory processing allows data analytics to be more like natural thought.  Humans typically acquire information over time, then recall that information selectively to solve problems and make decisions.  For example–if you’re familiar with seven restaurants in your neighborhood, and it’s time for dinner, you might consider which of these restaurants you’re in the mood for.  You might compare the different cuisines (Chinese? Indian? Seafood? Burgers?), the relative locations (walking distance? parking problems?), and the price level (pocket change? budget buster?).

You would probably just flip through these factors in your mind and make a decision on the fly.  Or you might collaborate with a dining companion. (“What are you in the mood for?”) But you probably would not make a table of all the relevant data, define the possible relationships among the different data items, memorize the table, retrieve the table from memory, write it down for display, and then begin your decision-making process–using only the facts in that specific table.

So here’s the money question:  If you had to go through all those steps to choose a restaurant . . . how often would you go out to eat?

Seriously.

Not only would the process itself take up a ridiculous amount of time, your final decisions would be based on limited data.  And remember—if you want to add more data to the mix (new restaurants, user reviews, etc.), you have to start all over again.

Just the same in business.  Fast, flexible access to large amounts of data offers the potential for lots of excellent analytics.  Slow access to small amounts of rigidly organized data not only discourages users from doing analysis but also may produce less-than-wonderful results.  And that sets up a vicious cycle.

C:  What next?

In-memory processing has evolved swiftly from “great idea” to a robust and ready technology that’s changing the BI landscape.  Find out more with an accessible overview from top BI analyst Cindi Howson, then review her InformationWeek white paper “Insight at the Speed of Thought: Taking Advantage of In-Memory Analytics” for additional detail.  (Registration painless and free!)

In many organizations, a key driver for use of in-memory tools will be the need for predictive analytics.  So next week’s ABCs post will look at how BI helps businesses see into the future.

Spotfire Blogging Team

Image Credit: Microsoft Office Clip Art

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Prototyping Cloud Analytic Applications

4 Min Read
Hadoop elephants
AnalyticsBig DataBusiness IntelligenceHadoopITMapReduceOpen SourceSoftware

4 Considerations When Choosing a Hadoop Distribution

7 Min Read

Building Agile Processes with SOA and Business Rules

8 Min Read

Tips for Developing a Super HR Analytics Team

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?