Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: BI’s Dirty Secrets – The Unfortunate Domination of Manually-Coded Extracts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > BI’s Dirty Secrets – The Unfortunate Domination of Manually-Coded Extracts
Business IntelligenceCommentary

BI’s Dirty Secrets – The Unfortunate Domination of Manually-Coded Extracts

RickSherman
RickSherman
6 Min Read
SHARE

SecretManually-coded extracts are another dirty secret of the BI world. I’ve been seeing them for years, in both large and small companies. They grow haphazardly and are never documented, which practically guarantees that they will become an IT nightmare.

SecretManually-coded extracts are another dirty secret of the BI world. I’ve been seeing them for years, in both large and small companies. They grow haphazardly and are never documented, which practically guarantees that they will become an IT nightmare.

How have manually-coded extracts become so prevalent? It’s not as if there aren’t enough data integration tools around, including ETL tools. Even large enterprises that use the correct tools to load their enterprise data warehouses will often resort to manually-coded extracts to load their downstream BI data sources such as data marts, OLAP cubes, reporting databases and spreadsheets.

More Read

Definition of Social CRM – Explained!
Analytics In A Global Recession: Fixed Price Operational Dashboard
There Are 2 Ways To Make Large Datasets Useful…
DIALOG IBM and ILOG – the strategic perspective
Decision Management and the Idiocy of “Video Bills”

After seeing this problem in enough client companies, I’ve got a few theories as to why it happens:

  • Money: The top tier tools are expensive. They are out of reach for SMBs and can even be too expensive for large enterprises to expand their use from the EDW to BI data source. There are data integration tools that would do a great job spanning price ranges, but for the most part nobody knows about them. And when they are used, they are misused (see below), so their reputation for producing a solid business ROI is diminished.
  • Stretched resources: In large enterprises, the centralized data warehouse team likely has data integration experience, but their backlog of work means that people creating BI data sources are on their own. So they end up hand-coding. In SMB firms, the IT staffs are too small to dedicate anyone to data integration, so no one is an expert.
  • Data never sleeps: Regardless of the state of data integration expertise and investment at an enterprise, business people still have to run and manage the business. This requires data. If the data has not been integrated for them, they’ll  figure out some other way to get it — even if it means cutting and pasting data from spreadsheet queries or getting IT to “crank out” SQL scripts. This is why data shadow systems or spreadmarts get started and then become so prevalent.
  • You don’t know what you don’t know:  Even when enterprises use data integration or ETL tools, they often don’t use them well. The biggest reason why people misuse these tools is that they don’t have a firm grasp of the concepts of data integration processes and advanced dimensional modeling.  Tools are easy; concepts are harder.  Anyone can start coding; it’s a lot harder to actually architect and design. Tool vendors don’t help this situation when they promote tools that “solve world hunger” and limit training to the tool, not any concepts.  

So, here’s what happens:  instead of using data integration best practices, people design the ETL tool processes the same way they would create a sequential series of SQL scripts to integrate data.  In fact, many an ETL process simply executes stored procedures (SP) or SQL scripts. Why use the tool at all if you’re not going to use its, capabilities? When this happens, IT figures it was a waste of time to use the ETL tool to begin with, and the ETL tool investment had no ROI. This becomes a self-reinforcing loop enabling IT to justify (or rationalize) manual coding.

  • Coding is easier than thinking:  There is an inherit bias for the IT staff to generate SQL code. They know it (just like the business person knows spreadsheets), they can crank something out quickly and it does not cost anything extra. The typical scenario is that the IT person creates a SQL script or a stored procedure to pull data from one source and things are fine. But then several hundred SQL scripts or stored procedures later, the hodgepodge and undocumented accumulation of pseudo ETL processes becomes the recurring method to load the data warehouse or BI data sources. Each change to that set of code takes longer and longer.  It consumes more and more resource time just to maintain it.  When new data needs to be integrated, another IT person starts the next hodgepodge of undocumented code with yet another simple SQL script.

How do we get out of this mess? Stay tuned for a future blog post.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Intelligence Connectivity: Empowering Employees and Organizations

3 Min Read

Data Science: Equality at Last!

4 Min Read

3 Big Data Technology Blunders You Must Avoid

6 Min Read

Financial Fraud Detection & Prevention Analytics Strategies

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?