Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Visualizing Reuters Editorial Investment
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Visualizing Reuters Editorial Investment
Data Visualization

Visualizing Reuters Editorial Investment

matthewhurst
matthewhurst
1 Min Read
SHARE

This is a very early view of a work in progress. The process is to crawl Reuters, extract the attribution of each article (writers and editors) and extract the mention of country names. Then, using gephi, to visualize the relationships, thus – in this case – showing which editors are associated with the mention of which countries. In this snippet, countries have mutual links (red) with other countries they are collocated with. Editors have directed edges (green) with the country mentions they are associated with.

This is a very early view of a work in progress. The process is to crawl Reuters, extract the attribution of each article (writers and editors) and extract the mention of country names. Then, using gephi, to visualize the relationships, thus – in this case – showing which editors are associated with the mention of which countries. In this snippet, countries have mutual links (red) with other countries they are collocated with. Editors have directed edges (green) with the country mentions they are associated with.

CountriesEditors

 

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Tabled: Is R the Solution?

12 Min Read

Project Cartoon: Data Modeling – Different Points of View

1 Min Read

The Information Supply Chain and the Growth of Enterprise App Stores

3 Min Read

The Data Analytics of Super Bowl Commercials

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?