Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Ranked Set Retrieval
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Ranked Set Retrieval
Uncategorized

Ranked Set Retrieval

Daniel Tunkelang
Daniel Tunkelang
6 Min Read
SHARE

I haven’t posted any ramblings about information retrieval theory in a while. Some of you might be grateful for this lull, but this post is for those of you who miss such thoughts. Everyone else: you’ve been warned!

Here’s what I’ve been thinking about. At one extreme, we have set retrieval, which, given a query, divides a corpus into two subsets corresponding to those documents the system believes to be relevant and those it does not–a binary split. At the other extreme, we have ranked retrieval, which orders documents according to their estimated likelihood of relevance. Given the poor reputation of extremism, I want to explore the space between these extremes.

In both extreme cases, the system returns an ordered sequence of subsets of the corpus, and I propose we consider this as a general framework, which we might call ranked set retrieval. In the first case, the system returns two sets; in the second case, it returns as many singleton sets as there are documents in the corpus. In practice, of course, even ranked retrieval systems tend to dismiss some subset of the corpus as irrelevant, which we can model in our ranked set retrieval framework by a…

More Read

SOA may be reincarnating into ‘private clouds’
Transform HR into a strategic business function
Self-Serve Analytics Really Aren’t DIY
Smarter Planet |Tumblr : September Roundup Survey all 120+…
Tweet Tweet

I haven’t posted any ramblings about information retrieval theory in a while. Some of you might be grateful for this lull, but this post is for those of you who miss such thoughts. Everyone else: you’ve been warned!

Here’s what I’ve been thinking about. At one extreme, we have set retrieval, which, given a query, divides a corpus into two subsets corresponding to those documents the system believes to be relevant and those it does not–a binary split. At the other extreme, we have ranked retrieval, which orders documents according to their estimated likelihood of relevance. Given the poor reputation of extremism, I want to explore the space between these extremes.

In both extreme cases, the system returns an ordered sequence of subsets of the corpus, and I propose we consider this as a general framework, which we might call ranked set retrieval. In the first case, the system returns two sets; in the second case, it returns as many singleton sets as there are documents in the corpus. In practice, of course, even ranked retrieval systems tend to dismiss some subset of the corpus as irrelevant, which we can model in our ranked set retrieval framework by appending that subset to the end of the ranked sequence of singletons.

Now that we can consider set retrieval and ranked retrieval in the same framework, we can ask interesting questions and reason about how they should inform the evaluation criteria for information retrieval systems.

For example, when is set retrieval a more appropriate response to a query than ranked retrieval? An easy–though only partial–answer there is evident from symmetry: set retrieval is more appropriate in cases where our estimates of relevance are themselves binary, and where we thus have no principled basis for a finer-grained partition. Hence, given such binary relevance assessments, our retrieval algorithm should recognize that our optimal response is to return two subsets. Conversely, the more fine-grained our estimates of relevance, the greater a basis we have for returning more subsets and including those documents estimated to be more relevant in earlier subsets. At the extreme, the relevance estimates for all documents may be so well separated that the optimal response is, in fact, to return a sequence of singleton sets as per conventional ranked retrieval.

Of course, the interesting cases are in between, i.e., where the optimal response to a query is a collection of subsets corresponding to varying ranges of relevance assessment. Or perhaps we should go beyond bucketing by relevance estimates, and instead optimize for the probability that one of the offered subsets has a high utility reflecting a combination of precision and recall. We could then ordering the subsets by their utility. In fact, a utility measure for such an approach could be recursive–since each subset is really a subquery or query refinement that can then be partitioned into ranked subsets. Indeed, such a recursive approach closely models the behavior we see with information retrieval systems that support interaction.

Why does this subject concern me so much? It’s not just that I’d like to see robust evaluation measures for faceted search and clustering–I’d like to see measures that are able to compare them against ranked retrieval in a common framework, without having to depend on user studies.

Perhaps I’m naively rediscovering paths already explored by folks like Yi Zhang and Jonathan Koren. Their notion of “expected utility based evaluation” does strike a chord. But I don’t see them or anyone else taking the next step and using such an approach to compare the apples and oranges of set and ranked retrieval methods. It’s a missed opportunity, and maybe even a way to bring IR respectability to approaches designed for interactive and exploratory search. If IR can’t come to HCIR, perhaps HCIR can come to IR.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Quality vs. Quantity

3 Min Read

2 Critical Obstacles Facing Retailers for Data Driven Marketing

6 Min Read

Health care, scandal, and leading change

3 Min Read

Maine Repeals Controversial Online Marketing Law

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?