By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    analyst,women,looking,at,kpi,data,on,computer,screen
    What to Know Before Recruiting an Analyst to Handle Company Data
    6 Min Read
    AI analytics
    AI-Based Analytics Are Changing the Future of Credit Cards
    6 Min Read
    data overload showing data analytics
    How Does Next-Gen SIEM Prevent Data Overload For Security Analysts?
    8 Min Read
    hire a marketing agency with a background in data analytics
    5 Reasons to Hire a Marketing Agency that Knows Data Analytics
    7 Min Read
    predictive analytics for amazon pricing
    Using Predictive Analytics to Get the Best Deals on Amazon
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Voodoo Spectrum of Machine Learning and Data Sets
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Voodoo Spectrum of Machine Learning and Data Sets
Business IntelligenceData Mining

Voodoo Spectrum of Machine Learning and Data Sets

Editor SDC
Last updated: 2010/06/01 at 6:51 AM
Editor SDC
3 Min Read
SHARE

I used to be very gung-ho about machine learning approaches to trading but I’m less so now. You have to understand that that there is a spectrum of alpha sources, from very specific structured arbitrage opportunities -> to stat arb -> to just voodoo nonsense.

As history goes on, hedge funds and other large players are absorbing the alpha from left to right. Having squeezed the pure arbs (ADR vs underlying, ETF vs components, mergers, currency triangles, etc) they then became hungry again and moved to stat arb (momentum, correlated pairs, regression analysis, news sentiment, etc). But now even the big stat arb strategies are running dry so people go further, chasing mirages (nonlinear regression, causality inference in large data sets, etc).

In modeling the market, it’s best to start with as much structure as possible before moving on to more amorphous statistical strategies. If you have to use statistical machine learning, encode as much trading domain knowledge as possible with specific distance/neighborhood metrics, linearity, variable importance weightings, hierarchy, low-dimensional factors, etc.
It’s good to have a heuristic feel for the …

More Read

machine learning and mesh networks

Machine Learning Improves Mesh Networks & Fights Dead Zones

7 Mistakes to Avoid When Using Machine Learning for SEO
Use this Strategic Approach to Maximize Your Data’s Value
Machine Learning is Invaluable for Mobile App Testing Automation
Top 8 Machine Learning Development Companies in 2022


I used to be very gung-ho about machine learning approaches to trading but I’m less so now. You have to understand that that there is a spectrum of alpha sources, from very specific structured arbitrage opportunities -> to stat arb -> to just voodoo nonsense.

As history goes on, hedge funds and other large players are absorbing the alpha from left to right. Having squeezed the pure arbs (ADR vs underlying, ETF vs components, mergers, currency triangles, etc) they then became hungry again and moved to stat arb (momentum, correlated pairs, regression analysis, news sentiment, etc). But now even the big stat arb strategies are running dry so people go further, chasing mirages (nonlinear regression, causality inference in large data sets, etc).

In modeling the market, it’s best to start with as much structure as possible before moving on to more amorphous statistical strategies. If you have to use statistical machine learning, encode as much trading domain knowledge as possible with specific distance/neighborhood metrics, linearity, variable importance weightings, hierarchy, low-dimensional factors, etc.
It’s good to have a heuristic feel for the danger/flexibility/noise sensitivity (synonyms) of each statistical learning tool. I roughly have this spectrum in my head:
Very specific, structured, safe
Optimize 1 parameter, require crossvalidation
↓
Optimize 2 parameters, require crossvalidation
↓
Optimize parameters with too little data, require regularization
↓
Extrapolation
↓
Nonlinear (SVM, tree bagging, etc)
↓
Higher-order variable dependencies
↓
Variable selection
↓
Structure learning
Very general, dangerous in noise, voodoo
This diagram is worth expanding. If anyone has any suggestions, please leave them.

TAGGED: data sets, machine learning, modeling
Editor SDC June 1, 2010
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data breaches
How Hospital Security Breaches Devastate Local Communities
Policy and Governance
analyst,women,looking,at,kpi,data,on,computer,screen
What to Know Before Recruiting an Analyst to Handle Company Data
Analytics
data perspective
Tackling Bias in AI Translation: A Data Perspective
Big Data
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Data Ethics: Safeguarding Privacy and Ensuring Responsible Data Practices
Best Practices Big Data Data Collection Data Management Privacy

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

machine learning and mesh networks
Machine Learning

Machine Learning Improves Mesh Networks & Fights Dead Zones

7 Min Read
machine learning seo
Machine Learning

7 Mistakes to Avoid When Using Machine Learning for SEO

6 Min Read
analyzing big data for its quality and value
Big Data

Use this Strategic Approach to Maximize Your Data’s Value

6 Min Read
machine learning helps with the testing process for mobile app development
Machine Learning

Machine Learning is Invaluable for Mobile App Testing Automation

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?