Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A free book on Geostatistical Mapping with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > A free book on Geostatistical Mapping with R
Data Visualization

A free book on Geostatistical Mapping with R

DavidMSmith
DavidMSmith
5 Min Read
SHARE

Tomislav Hengl of the University of Amsterdam has published new book, A Practical Guide to Geostatistical Mapping. It’s jam-packed with 291 pages on mapping and analyzing spatial data using free software including R, SAGA, GRASS, ILWIS and Google Earth, and freely-available map data. The book itself is also available for free, as an Open Access Publication. You can order the book in printed form for US$12.78, or download it for free as a PDF.

Surprisingly (given the title), this book isn’t just about visual displays of spatial data. In fact, the first two chapters offer a nice overview of statistical analysis of spatial data (although with a greater focus on continuous-field models than point-process models). If you want a concise overview of regression-kriging, this is a great resource.

R-on-topChapter 3 addresses the various software tools you’ll use to analyze the data and create the maps. Some care has been taken in considering how the software elements should be integrated, and Hengl recommends a “R on top” model, where R scripts drive the other tools. 

This is a clever move: making use of the scripting capabilities of R means you can avoid much of the …

More Read

Three Ways of Visualizing the Growth of Walmart
How to Create an OBIEE Dashboard Tutorial
What a real flu pandemic looks like
6 Key Capabilities an Embeddable Analytics Software Should Deliver
Ease-of-use Key to Successful Business Intelligence Deployments

Tomislav Hengl of the University of Amsterdam has published new book, A Practical Guide to Geostatistical Mapping. It’s jam-packed with 291 pages on mapping and analyzing spatial data using free software including R, SAGA, GRASS, ILWIS and Google Earth, and freely-available map data. The book itself is also available for free, as an Open Access Publication. You can order the book in printed form for US$12.78, or download it for free as a PDF.

Surprisingly (given the title), this book isn’t just about visual displays of spatial data. In fact, the first two chapters offer a nice overview of statistical analysis of spatial data (although with a greater focus on continuous-field models than point-process models). If you want a concise overview of regression-kriging, this is a great resource.

R-on-topChapter 3 addresses the various software tools you’ll use to analyze the data and create the maps. Some care has been taken in considering how the software elements should be integrated, and Hengl recommends a “R on top” model, where R scripts drive the other tools. 

This is a clever move: making use of the scripting capabilities of R means you can avoid much of the tedious manual back-and-forth activities that are usually associated with working with several software tools. Hengl offers some other reasons for working with R, too (p. 90):

  • It is of high quality — It is a non-proprietary product of international collaboration between top statisticians. 
  • It helps you think critically — It stimulates critical thinking about problem-solving rather than a push the button mentality. 
  • It is an open source software — Source code is published, so you can see the exact algorithms being used; expert statisticians can make sure the code is correct.
  • It allows automation — Repetitive procedures can easily be automated by user-written scripts or functions.
  • It helps you document your work — By scripting in R, anybody is able to reproduce your work (processing metadata). You can record steps taken using history mechanism even without scripting, e.g. by using the savehistory() command.
  • It can handle and generate maps — R now also provides rich facilities for interpolation and statistical analysis of spatial data, including export to GIS packages and Google Earth. 

Chapter 4 covers the various auxiliary data sources available, listing sources global environmental and socio-economic data, and sources of maps and satellite imagery like GADM, Google Earth and MODIS. 

The remaining chapters are devoted to worked examples of spatial data analysis and mapping. By working through the examples, you can recreate charts like these (click to enlarge):

US-kriging
One minor complaint: most of the images in the book are in black-and-white (most likely to facilitate the printing process). But at least you have the R scripts and data for all exercises (these, plus updated maps, are available from the book’s website), so at least you can re-run the examples in R to recreate them in color.

Tomislav Hengl: A Practical Guide to Geostatistical Mapping (via @fernando_mayer)

Link to original post

TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Intelligent Enterprise: You Can Predict that R Will Succeed

4 Min Read

Animate R graphics with Flash

3 Min Read

Thoughts on UseR! 2009

5 Min Read

R and the Next Big Thing

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?