Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics: 8 Things to Keep in Mind (Part 4)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics: 8 Things to Keep in Mind (Part 4)
Data MiningPredictive Analytics

Predictive Analytics: 8 Things to Keep in Mind (Part 4)

Editor SDC
Editor SDC
6 Min Read
SHARE

Theme 4: Statistical techniques and tools are not likely to provide competitive advantage

I read this interesting post from Sijin describing his journey to master a video game (emphasis added by me)

More Read

power BI solutions
How To Enhance Your Jira Experience With Power BI
Sam Palmisano, IBM chairman & CEO, and CNBC’s Maria…
Forecasting Is Harder Than It Looks
A Card-Swipe for Medical Tests
First Look – JMP Pro: Exploratory Data and Visualization

All this kind of reminded me of my experiences with finding the perfect weapon while playing Call of Duty 4 over the past year. I spent 3 hours a day almost every day for the past one year playing this game, reaching the max prestige level (the “elite” club) in the multi-player version. I became really good at it… no matter what weapon I was using. But I remember when I started out and I really sucked, I became obsessed with finding the perfect weapon with the perfect set of perks and add-ons. I used to wander the forums asking people about which weapons and perks to use on which map and what the best tips were etc. Thinking that having the perfect weapon would make me a good player. In the end, the only thing that mattered was all the hours I put in to learn all the maps, routes, tricks and my ability (I like to think). The surprising thing was that once I mastered the game, it didn’t really matter what weapon I chose, I was able to adapt any weapon and…

Theme 4: Statistical techniques and tools are not likely to provide competitive advantage

I read this interesting post from Sijin describing his journey to master a video game (emphasis added by me)

All this kind of reminded me of my experiences with finding the perfect weapon while playing Call of Duty 4 over the past year. I spent 3 hours a day almost every day for the past one year playing this game, reaching the max prestige level (the “elite” club) in the multi-player version. I became really good at it… no matter what weapon I was using. But I remember when I started out and I really sucked, I became obsessed with finding the perfect weapon with the perfect set of perks and add-ons. I used to wander the forums asking people about which weapons and perks to use on which map and what the best tips were etc. Thinking that having the perfect weapon would make me a good player. In the end, the only thing that mattered was all the hours I put in to learn all the maps, routes, tricks and my ability (I like to think). The surprising thing was that once I mastered the game, it didn’t really matter what weapon I chose, I was able to adapt any weapon and do a decent job.

This story captures the essence of the theme of this post.

The popular statistical techniques frequently used in business analytics like linear regression and logistic regression are more than half-a-century old. System dynamics was developed in 1950s. Even neural networks have been around for more than 40 years. SAS was founded in 1976 and the open source statistical tool R was developed in 1993. The point is that popular analytical techniques and tools have been around for some time and their benefits and limitations are fairly well understood.

An unambiguous definition of the business problem that will impact a decision, a clear analysis path leading to output, thorough understanding of various internal and 3rd-party datasets are all more important aspects of a predictive analytics solution than the choice of the tool. Not to mention having a clear linkage between the problem, the resulting decision, and measurable business value.  The challenge is in finding an expert user who understands the pros and cons and adapts the tools and techniques to solve the problem at hand. Companies will be better served by investing in the right analytical expertise rather than worrying about the tools and technique as the right analytical team can certainly be a source of competitive advantage.

While this theme is fairly well understood within the analytics practitioner community, the same cannot be said about business users and executives. It is still easy to find senior executives who believe that ‘cutting edge’ techniques like neural networks should be used to solve their business problem or predictive analytics tools are a key differentiator while selecting analytics vendors.  The analytics community needs to do a better job in educating the business user and senior executives about this theme.

You can read the previous installments of the series here (part 1, part 2, and part 3).

Link to original post

TAGGED:analyticsbusiness intelligencedata mining
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Softer Side of Risk Management Means Fewer Analytics

4 Min Read

Big Data Analytics: The Four Pillars

9 Min Read

Seasonal Web Traffic: The Proverbial Coal in Your Stocking

7 Min Read
benefits of data lakes
Big DataData LakeExclusive

The Business And Technological Benefits Of Data Lakes

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?