Predictive Analytics, Business Intelligence, and Strategy Management

December 9, 2009
87 Views

I was having a discussion with one of my clients this week and I thought he did a nice job summing up Predictive Analytics.

So in the World According to Reed (WOTR) – “queries answer questions, analytics creates questions.” My response was “and Strategy Management helps us to focus on which questions to answer.”

Reed Blalock is exactly right, traditional BI is about answering the questions we know. Analytics is really what we create with data mining – we look for nuances, things that might give us new insight into old problems. We use human intellect to explore and test. And yes, there is a little overlap. But what is really happening is that we have a different level of human interaction with the data.

BI is about history, analytics attempts to get us to think, to change, and idealistically to act.

The danger with both of these is that they can be resource intensive. Neither tool, or mindset should be left to their own devices. What is needed is a filter to identify the priority and purpose. This is where strategy management and scorecarding comes into play. We have built out massive informational assets without understanding where, when, and how to use it. We have



I was having a discussion with one of my clients this week and I thought he did a nice job summing up Predictive Analytics.

So in the World According to Reed (WOTR) – “queries answer questions, analytics creates questions.” My response was “and Strategy Management helps us to focus on which questions to answer.”

Reed Blalock is exactly right, traditional BI is about answering the questions we know. Analytics is really what we create with data mining – we look for nuances, things that might give us new insight into old problems. We use human intellect to explore and test. And yes, there is a little overlap. But what is really happening is that we have a different level of human interaction with the data.

BI is about history, analytics attempts to get us to think, to change, and idealistically to act.

The danger with both of these is that they can be resource intensive. Neither tool, or mindset should be left to their own devices. What is needed is a filter to identify the priority and purpose. This is where strategy management and scorecarding comes into play. We have built out massive informational assets without understanding where, when, and how to use it. We have pushed out enormous reporting structures and said “it’s all there, you can find anything you need” yet we scratch our heads when we see adoptions levels are low.

What we have typically not done all that well is build out that informational asset by how it helps us be more productive along product lines, divisions, sales region, etc. We have treated all dimensionality the same. Why, because it was easy. The BI tools are tremendous in how quickly you can add any and all dimensions.

“But because you can, doesn’t mean you should”

As we built out these data assets, we did not align them to performance themes. We have gotten better with some key themes, like supply chain management, and human resource management, but what about customer performance? We might look at sales performance, but that is a completely different lens than customer performance.

How do we determine which assets to start with… what assets do we need to be successful 3-5 years from now, or what are our biggest gaps to close today. Think about customer value, or employee satisfaction (and that doesn’t mean more HR assets). Think about your gaps in Strategy.

How often do we discuss…

  • Are our customers buying more or less frequently?
  • What are our best, and better customers doing?
  • What are the costs associated with serving our least profitable customers?
  • Where are our biggest holes in understanding?


Link to original post