Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Search User Interfaces and Data Quality
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > Search User Interfaces and Data Quality
Uncategorized

Search User Interfaces and Data Quality

Daniel Tunkelang
Daniel Tunkelang
6 Min Read
SHARE

One of the many things I’ve enjoyed in my first few weeks of working at Google is the opportunity to talk with many people who care about user interfaces and think about HCIR. Indeed, some of the folks working on “more and better search refinements” are just steps away from my desk. Very cool!

But working on the inside has also help me appreciate what Bob Wyman tried to tell me months ago – that Google has no philosophical predilection towards black box approaches, but rather is only limited by what technology makes possible and what its engineers can implement. I’d qualify that slightly by saying that I perceive an additional constraint: Google does have a strong predilection towards data-driven decisions. Some folks have found that approach objectionable in the context of interface design.

Anyway, if you’re a regular here, then you’re probably predisposed towards HCIR and exploratory search. In that case, I’d like to take a moment to help you appreciate the challenge I face on a day-to-day basis.

Which one of these two statements do you most agree with?

More Read

Book Review: Planet Google
One Software CEO’s View on “Ease” Buyers vs. “Function” Buyers
Reconsidering Relevance: Now on YouTube!
Data Mining Interview: Dr. A. Fazel Famili
Why No Regulation of Offshoring: Untangling the Gap Between Rhetoric and Action
  1. We need better data quality in order to support richer search user interfaces.
  2. Richer search user interfaces allow us …



One of the many things I’ve enjoyed in my first few weeks of working at Google is the opportunity to talk with many people who care about user interfaces and think about HCIR. Indeed, some of the folks working on “more and better search refinements” are just steps away from my desk. Very cool!

But working on the inside has also help me appreciate what Bob Wyman tried to tell me months ago – that Google has no philosophical predilection towards black box approaches, but rather is only limited by what technology makes possible and what its engineers can implement. I’d qualify that slightly by saying that I perceive an additional constraint: Google does have a strong predilection towards data-driven decisions. Some folks have found that approach objectionable in the context of interface design.

Anyway, if you’re a regular here, then you’re probably predisposed towards HCIR and exploratory search. In that case, I’d like to take a moment to help you appreciate the challenge I face on a day-to-day basis.

Which one of these two statements do you most agree with?

  1. We need better data quality in order to support richer search user interfaces.
  2. Richer search user interfaces allow us to overcome data quality limitations.

On one hand, consider two search engines whose interfaces are designed to support exploratory search: Cuil and Kosmix. Sometimes they’re great, e.g., [michael jackson] on Cuil and [iraq] on Kosmix. But look what can happen for queries that are further out in the tail, e.g. [faceted search] on Cuil [real time search] on Kosmix. Yes, the kinds of queries I make. :-) I don’t mean to knock these guys – they’re trying, and their efforts are admirable. Moreover, both generally return respectable search results on the first pages (in Kosmix’s case, through federation). But the search refinements can be way off, and that undermine the overall experience. I strongly suspect that the problem is one of data quality, along the lines of what others have argued.

On the other hand, some of the work that I did with colleagues at Endeca (e.g., work presented at HCIR 2008 on “Supporting Exploratory Search for the ACM Digital Library”) at least dangles the possibility that the second statement holds – namely, a richer user interface could help overcome data quality limitations. Interaction draws more of the information need out of the user, and the process may be able to mask imperfection in the data. For example, it’s clear to users – and clear from the search refinements – that [michael jackson beer] and [michael jackson -beer] are about different people. If we can just get that incremental information from the user, we don’t have to achieve perfection in named entity recognition and disambiguation.

I think there’s some truth in both arguments. Data quality is a major bottleneck for effectively delivering an exploratory search experience, and data quantity, much as it helps, is not a guarantee of quality. Richer interfaces offer the enticing possibility of leveraging human computation, but they also introduce the risk of disappointing and alienating users. Even for an HCIR zealot like me, the constraints of reality are sobering.

And yes, speed and computational cost matter too. But hey, it wouldn’t be a grand challenge if it were easy!

Link to original post

TAGGED:data qualityexploratory search
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Data Quality Goldilocks Zone

6 Min Read

Hell is other people’s data

5 Min Read
data collection with drone use
Data Collection

Quality Control Tips for Data Collection with Drone Surveying

9 Min Read
data lineage tool
Big Data

7 Data Lineage Tool Tips For Preventing Human Error in Data Processing

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?