Big Data and Real-time Structured Data Analytics -…

August 13, 2009
49 Views

Big Data and Real-time Structured Data Analytics – O’Reilly Radar

The emergence of sensors as sources of Big Data highlights the need for real-time analytic tools. Popular web apps like Twitter, Facebook, and blogs are also faced with having to analyze (mostly unstructured) data in near real-time. But as Truviso founder and UC Berkeley CS Professor Michael Franklin recently noted, there are mountains of structured data generated by web apps that lend themselves to real-time analysis: The information stream driving the data analytics challenge is orders of magnitude larger than the streams of tweets, blog posts, etc. that are driving interest in searching the real-time web. Most tweets, for example, are created manually by people at keyboards or touchscreens, 140 characters at a time. Multiply that by the millions of active users and the result is indeed an impressive amount of information. The data driving the data analytics tsunami, on the other hand, is automatically generated. Every page view, ad impression, ad click, video view, etc. done by every user on the web generates thousands of bytes of log information. Add in the data automatically generated by the underlying


Big Data and Real-time Structured Data Analytics – O’Reilly Radar

The emergence of sensors as sources of Big Data highlights the need for real-time analytic tools. Popular web apps like Twitter, Facebook, and blogs are also faced with having to analyze (mostly unstructured) data in near real-time. But as Truviso founder and UC Berkeley CS Professor Michael Franklin recently noted, there are mountains of structured data generated by web apps that lend themselves to real-time analysis: The information stream driving the data analytics challenge is orders of magnitude larger than the streams of tweets, blog posts, etc. that are driving interest in searching the real-time web. Most tweets, for example, are created manually by people at keyboards or touchscreens, 140 characters at a time. Multiply that by the millions of active users and the result is indeed an impressive amount of information. The data driving the data analytics tsunami, on the other hand, is automatically generated. Every page view, ad impression, ad click, video view, etc. done by every user on the web generates thousands of bytes of log information. Add in the data automatically generated by the underlying infrastructure (CDNs, servers, gateways, etc.) and you can quickly find yourself dealing with petabytes of data.

The Smarter Planet tumblelog is an outgrowth of IBM’s strategic initiative to help a world of smart systems emerge.

Link to original post

To see just the posts related to the “new intelligence” — advanced business intelligence, predictive analytics, decision support and large scale data managment — try this link:
http://smarterplanet.tumblr.com/tagged/new_intelligence

 See this primer on Smarter Planet

 

You may be interested

How SAP Hana is Driving Big Data Startups
Big Data
298 shares2,906 views
Big Data
298 shares2,906 views

How SAP Hana is Driving Big Data Startups

Ryan Kh - July 20, 2017

The first version of SAP Hana was released in 2010, before Hadoop and other big data extraction tools were introduced.…

Data Erasing Software vs Physical Destruction: Sustainable Way of Data Deletion
Data Management
41 views
Data Management
41 views

Data Erasing Software vs Physical Destruction: Sustainable Way of Data Deletion

Manish Bhickta - July 20, 2017

Physical Data destruction techniques are efficient enough to destroy data, but they can never be considered eco-friendly. On the other…

10 Simple Rules for Creating a Good Data Management Plan
Data Management
69 shares622 views
Data Management
69 shares622 views

10 Simple Rules for Creating a Good Data Management Plan

GloriaKopp - July 20, 2017

Part of business planning is arranging how data will be used in the development of a project. This is why…