Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: AmazonFail = TaxonomyFail?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > AmazonFail = TaxonomyFail?
Uncategorized

AmazonFail = TaxonomyFail?

Daniel Tunkelang
Daniel Tunkelang
3 Min Read
SHARE

By now, #amazonfail seems like old news (yesterday’s detwitus?), though apparently Amazon’s PR folks are still doing damage control.

But what intrigues me was something in Clay Shirky’s nostra culpa post comparing the collective outrage against Amazon to the Tawana Brawley incident. While the post on a whole did not move me (perhaps because I don’t have any guilt to atone for), I did see a valuable nugget:

The problems they have with labeling and handling contested categories is a problem with all categorization systems since the world began. Metadata is worldview; sorting is a political act. Amazon would love to avoid those problems if they could – who needs the tsouris? — but they can’t. No one gets cataloging “right” in any perfect sense, and no algorithm returns the “correct” results. We know that, because we see it every day, in every large-scale system we use. No set of labels or algorithms solves anything once and for all; any working system for showing data to the user is a bag of optimizations and tradeoffs that are a lot worse than some Platonic ideal, but a lot better than nothing.

Indeed, perhaps the problem is that Amazon relies too mu…

More Read

The R Journal – A Refereed Journal for the R Project Launches
Online Privacy Changes Imminent from Washington
Privacy Legislation and Affiliate Marketing
“We had the data, but we didn’t have the information.”
2009: The Year of Engagement

By now, #amazonfail seems like old news (yesterday’s detwitus?), though apparently Amazon’s PR folks are still doing damage control.

But what intrigues me was something in Clay Shirky’s nostra culpa post comparing the collective outrage against Amazon to the Tawana Brawley incident. While the post on a whole did not move me (perhaps because I don’t have any guilt to atone for), I did see a valuable nugget:

The problems they have with labeling and handling contested categories is a problem with all categorization systems since the world began. Metadata is worldview; sorting is a political act. Amazon would love to avoid those problems if they could – who needs the tsouris? — but they can’t. No one gets cataloging “right” in any perfect sense, and no algorithm returns the “correct” results. We know that, because we see it every day, in every large-scale system we use. No set of labels or algorithms solves anything once and for all; any working system for showing data to the user is a bag of optimizations and tradeoffs that are a lot worse than some Platonic ideal, but a lot better than nothing.

Indeed, perhaps the problem is that Amazon relies too much on algorithmic cleverness when it should be taking a more transparent HCIR approach. Perhaps not what Shirky was after, but it’s consistent with all of the versions I’ve heard of what went wrong.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive
ai and law enforcement
Forensic AI Technology is Doing Wonders for Law Enforcement
Artificial Intelligence Exclusive
langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive
ai fitness app
Will AI Replace Personal Trainers? A Data-Driven Look at the Future of Fitness Careers
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How well are you protecting your enterprise content?

2 Min Read

Managerial Essays on Social Networks

2 Min Read

Better Data Quality From Your Web Form

5 Min Read

Time To Manage Your Social Media

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?