Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Flaw of the Hub-and-Spoke Architecture
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The Flaw of the Hub-and-Spoke Architecture
Business Intelligence

The Flaw of the Hub-and-Spoke Architecture

EvanLevy
EvanLevy
5 Min Read
SHARE

I recently talked to a client who was fixated on a hub-and-spoke solution to support his company’s analytical applications. This guy had been around the block a few times and had some pretty set paradigms about how BI should work. In the world of software and data, the one thing I’ve learned is that there are no absolutes. And there’s no such thing as a universal architecture.

Wheel_spokes
photo by John-Morgan

The premise of a hub-and-spoke architecture is to have a data warehouse function as the clearing house for all the data a company’s applications might need. This can be a reasonable approach if data requirements are well-defined, predictable, and homogenous across the applications—and if data latency isn’t an issue.

First-generation data warehouses were originally built as reporting systems. But people quickly recognized the need for data provisioning (e.g., moving data between systems), and data warehouses morphed into storehouses for analytic data. This was out of necessity: developers didn’t have the knowledge or skills to retrieve data from operational systems. The data warehouse was rendered a data provisioning platform not because of architectural elegance but due to resource and sk…

More Read

Big Data: What can an energy company teach us about data science?
Forrester: The Era of Self-Service BI is Here
Small Businesses Can Use Big Data eCommerce Solutions For Massive Success
Mobile Business Intelligence
Promising Benefits of AI in the Financial Technology Market


I recently talked to a client who was fixated on a hub-and-spoke solution to support his company’s analytical applications. This guy had been around the block a few times and had some pretty set paradigms about how BI should work. In the world of software and data, the one thing I’ve learned is that there are no absolutes. And there’s no such thing as a universal architecture.

Wheel_spokes
photo by John-Morgan

The premise of a hub-and-spoke architecture is to have a data warehouse function as the clearing house for all the data a company’s applications might need. This can be a reasonable approach if data requirements are well-defined, predictable, and homogenous across the applications—and if data latency isn’t an issue.

First-generation data warehouses were originally built as reporting systems. But people quickly recognized the need for data provisioning (e.g., moving data between systems), and data warehouses morphed into storehouses for analytic data. This was out of necessity: developers didn’t have the knowledge or skills to retrieve data from operational systems. The data warehouse was rendered a data provisioning platform not because of architectural elegance but due to resource and skills limitations.

(And let’s not forget that the data contained in all these operational systems was rarely documented, whereas data in the warehouse was often supported by robust metadata.)

If everyone’s needs are homogenous and well-defined, using the data warehouse for data provisioning is just fine. The flaw of hub-and-spoke is that it doesn’t address issues of timeliness and latency.  After all, if it could why are programmers still writing custom code for data provisioning?

When an airline wants to adjust the cost of seats, it can’t formulate new pricing based on old data—it needs up-to-the-minute pricing details. Large distribution networks, like retailing and shipping, have learned that hub-and-spoke systems are not the most efficient or cost-effective models.

Nowadays most cutting-edge analytic tools are focused on allowing the business to quickly respond to events and circumstances. And most companies have adopted packaged applications for their core financial and operations. Unlike the proprietary systems of the past, these applications are in fact well-documented, and many come with utilities and standard extracts as part of initial delivery. What’s changed in the last 15 years is that operational applications are now built to share data. And most differentiating business processes require direct source system access.

Many high-value business needs require fine-grained, non-enterprise data. To move this specialized, business function-centric content through a hub-and-spoke network designed to support large-volume, generalized data is not only inefficient but more costly. Analytic users don’t always need the same data. Moreover, these users now know where the data is, so time-sensitive information can be available on-demand.

The logistics and shipping industries learned that you can start with a hub-and-spoke design, but when volume reaches critical mass, direct source-to-destination links are more efficient, and more profitable. (If this wasn’t the case, there would be no such thing as the non-stop flight.) When business requirements are specialized and high-value (e.g., low-latency, limited content), provisioning data directly from the source system is not only justified, it’s probably the most efficient solution.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

future of AI - human powered data
Artificial Intelligence

The Future of AI: High Quality, Human Powered Data

7 Min Read

Wanted: Senior Vice President of Social Networking

1 Min Read

How One Post Quintupled My Blog Visitors

4 Min Read

CVM Combined with Analytics

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?