Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Flaw of the Hub-and-Spoke Architecture
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The Flaw of the Hub-and-Spoke Architecture
Business Intelligence

The Flaw of the Hub-and-Spoke Architecture

EvanLevy
EvanLevy
5 Min Read
SHARE

I recently talked to a client who was fixated on a hub-and-spoke solution to support his company’s analytical applications. This guy had been around the block a few times and had some pretty set paradigms about how BI should work. In the world of software and data, the one thing I’ve learned is that there are no absolutes. And there’s no such thing as a universal architecture.

Wheel_spokes
photo by John-Morgan

The premise of a hub-and-spoke architecture is to have a data warehouse function as the clearing house for all the data a company’s applications might need. This can be a reasonable approach if data requirements are well-defined, predictable, and homogenous across the applications—and if data latency isn’t an issue.

First-generation data warehouses were originally built as reporting systems. But people quickly recognized the need for data provisioning (e.g., moving data between systems), and data warehouses morphed into storehouses for analytic data. This was out of necessity: developers didn’t have the knowledge or skills to retrieve data from operational systems. The data warehouse was rendered a data provisioning platform not because of architectural elegance but due to resource and sk…

More Read

The Slow Demise of 4GLs
The Butterfly Effect and Data Quality
WebFOCUS Closed-Loop Mobile BI
Electrospinning is a process that uses an electrical charge to…
What Were They Thinking?


I recently talked to a client who was fixated on a hub-and-spoke solution to support his company’s analytical applications. This guy had been around the block a few times and had some pretty set paradigms about how BI should work. In the world of software and data, the one thing I’ve learned is that there are no absolutes. And there’s no such thing as a universal architecture.

Wheel_spokes
photo by John-Morgan

The premise of a hub-and-spoke architecture is to have a data warehouse function as the clearing house for all the data a company’s applications might need. This can be a reasonable approach if data requirements are well-defined, predictable, and homogenous across the applications—and if data latency isn’t an issue.

First-generation data warehouses were originally built as reporting systems. But people quickly recognized the need for data provisioning (e.g., moving data between systems), and data warehouses morphed into storehouses for analytic data. This was out of necessity: developers didn’t have the knowledge or skills to retrieve data from operational systems. The data warehouse was rendered a data provisioning platform not because of architectural elegance but due to resource and skills limitations.

(And let’s not forget that the data contained in all these operational systems was rarely documented, whereas data in the warehouse was often supported by robust metadata.)

If everyone’s needs are homogenous and well-defined, using the data warehouse for data provisioning is just fine. The flaw of hub-and-spoke is that it doesn’t address issues of timeliness and latency.  After all, if it could why are programmers still writing custom code for data provisioning?

When an airline wants to adjust the cost of seats, it can’t formulate new pricing based on old data—it needs up-to-the-minute pricing details. Large distribution networks, like retailing and shipping, have learned that hub-and-spoke systems are not the most efficient or cost-effective models.

Nowadays most cutting-edge analytic tools are focused on allowing the business to quickly respond to events and circumstances. And most companies have adopted packaged applications for their core financial and operations. Unlike the proprietary systems of the past, these applications are in fact well-documented, and many come with utilities and standard extracts as part of initial delivery. What’s changed in the last 15 years is that operational applications are now built to share data. And most differentiating business processes require direct source system access.

Many high-value business needs require fine-grained, non-enterprise data. To move this specialized, business function-centric content through a hub-and-spoke network designed to support large-volume, generalized data is not only inefficient but more costly. Analytic users don’t always need the same data. Moreover, these users now know where the data is, so time-sensitive information can be available on-demand.

The logistics and shipping industries learned that you can start with a hub-and-spoke design, but when volume reaches critical mass, direct source-to-destination links are more efficient, and more profitable. (If this wasn’t the case, there would be no such thing as the non-stop flight.) When business requirements are specialized and high-value (e.g., low-latency, limited content), provisioning data directly from the source system is not only justified, it’s probably the most efficient solution.

Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

TDWI World Conference Chicago 2009

14 Min Read

My “all-time” most-read 5 articles

4 Min Read

Oracle buys Haley

1 Min Read
Image
Business IntelligenceCloud ComputingData ManagementITSecurity

Even after Dyn DDoS attack, businesses shouldn’t ditch DNS providers, analyst says

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?