Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 10 Guiding Principles for Better Business Intelligence
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > 10 Guiding Principles for Better Business Intelligence
Business Intelligence

10 Guiding Principles for Better Business Intelligence

MIKE20
MIKE20
3 Min Read
SHARE

Business Intelligence (BI) refers to the skills, processes, technologies, applications and practices used to support decision making, and is crucial component of strategy for businesses to operate successfully.   MIKE2.0 has a valuable wiki article on this topic that shares guiding principles to help information management professionals develop a strong BI program.   

Contents
1) Keep the strategy at the vision level2) Use a requirements-driven approach3) Develop a BusinessTime model for synchronisation4) Use a well-architected approach5) Investigate & fix DQ problems early6) Use standards to reduce complexity7) Build a metadata-driven solution8 ) Store data at a detailed and integrated level9) Design for continuous, increment-based delivery10) Use a detailed, method-based approach

Below are the basics:

Business Intelligence (BI) refers to the skills, processes, technologies, applications and practices used to support decision making, and is crucial component of strategy for businesses to operate successfully.   MIKE2.0 has a valuable wiki article on this topic that shares guiding principles to help information management professionals develop a strong BI program.   

More Read

Top 10 analytic mistakes
The Medical Home Model IBM is championing a new model for…
Artificial Intelligence: The New Super-Efficient Crime Busting Tool
A story about the power of rules to improve analytic decisions
Challenges of Big Data in Education

Below are the basics:

1) Keep the strategy at the vision level

Establish the Blueprint and never start from scratch – use best practice frameworks. Keep things at a strategic level while still following a diligent approach to requirements.

2) Use a requirements-driven approach

Even when using off-the-shelf information models, requirements must drive the solution. Plan to go through multiple iterations of requirements gathering.

3) Develop a BusinessTime model for synchronisation

Be prepared to handle growing requirements for the synchronisation of data in real-time into the analytical environment. Focus heavily on the “time dimension” as part of your architecture.

4) Use a well-architected approach

An analytical environment is not a dumping group for data. Data that is not integrated or conformed does not provide the value users want.

5) Investigate & fix DQ problems early

Data quality issues make it difficult to integrate data into the analytical environment and can make user reports worthless. Start with data profiling to identify high risk areas in the early stages of the project.

6) Use standards to reduce complexity

The Business Intelligence environment is inherently complex – to maximise benefits to the user the system must be easy to use. One of the most important things that can be done is to develop a set of open and common standards related to data, integration and infrastructure.

7) Build a metadata-driven solution

A comprehensive approach metadata management is the key to reducing complexity and promoting reusability across infrastructure. A metadata-driven approach makes it easier for users to understand the meaning of data and to understand how lineage of data across the environment.

8 ) Store data at a detailed and integrated level

Aggregation and integration is far easier when you store data at a detailed level. It you don’t store detailed analytical data, some users will typically not get all the information they want.

9) Design for continuous, increment-based delivery

Analytical environments should built through a “journey”.

10) Use a detailed, method-based approach

Methods such as MIKE2.0 can help provide a task-oriented approach with detailed supporting artifacts. 

Need more info?  Comments or additions?  Please let us know in the comments section below.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Do not make the biggest survey mistake!

2 Min Read

The Guy Kawasaki Twitter Bump – Anderson Analytics Facebook Application

3 Min Read

“These houses are part of a revolution in building design:…

1 Min Read

IBM and Employee-Centered Social Media (study by Social Media…

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?